
Scalable Knowledge Harvesting
with High Precision and High Recall

Ndapandula Nakashole, Martin Theobald, Gerhard Weikum
Max Planck Institute for Informatics

Saarbrücken, Germany
{nnakasho,mtb,weikum}@mpi-inf.mpg.de

ABSTRACT
Harvesting relational facts from Web sources has received great at-
tention for automatically constructing large knowledge bases. State-
of-the-art approaches combine pattern-based gathering of fact can-
didates with constraint-based reasoning. However, they still face
major challenges regarding the trade-offs between precision, recall,
and scalability. Techniques that scale well are susceptible to noisy
patterns that degrade precision, while techniques that employ deep
reasoning for high precision cannot cope with Web-scale data.

This paper presents a scalable system, called PROSPERA, for
high-quality knowledge harvesting. We propose a new notion of n-
gram-itemsets for richer patterns, and use MaxSat-based constraint
reasoning on both the quality of patterns and the validity of fact
candidates. We compute pattern-occurrence statistics for two bene-
fits: they serve to prune the hypotheses space and to derive informa-
tive weights of clauses for the reasoner. The paper shows how to in-
corporate these building blocks into a scalable architecture that can
parallelize all phases on a Hadoop-based distributed platform. Our
experiments with the ClueWeb09 corpus include comparisons to
the recent ReadTheWeb experiment. We substantially outperform
these prior results in terms of recall, with the same precision, while
having low run-times.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and Principles—General

Keywords
Knowledge Harvesting, Information Extraction, Scalability

1. INTRODUCTION

1.1 Motivation
Major advances in information extraction [25, 14] and the success
and high quality of knowledge-sharing communities like Wikipedia
have enabled the automated construction of large knowledge bases
[1, 32]. Notable efforts along these lines include ground-breaking
academic projects such as opencyc.org, dbpedia.org [4], knowitall

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’11, February 9–12, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

[16, 5], stat-snowball [37], readtheweb [9], and yago-naga [29],
as well as commercial endeavors such as wolframalpha.com, free-
base.com, and trueknowledge.com. Such knowledge bases contain
millions of entities and hundreds of millions of facts about them.
DBpedia and YAGO harvest Wikipedia categories, infoboxes, and
lists, achieving very high precision (fraction of correct facts). Ho-
wever, there are inherent limitations regarding recall (extent of facts
captured). Most interesting facts are expressed only in the natural-
language text of Wikipedia articles, which is much harder to com-
prehend by a machine; and even more is available in other sources
such as scholarly publications, news sites, and personal or business
Web pages.

Therefore, it is crucial to tap on natural-language sources for
further knowledge harvesting, and to continuously repeat this ef-
fort. Unfortunately, the methods for doing this are much less robust
and incur much higher computational costs. Shallow parsing with
pattern-based extraction has high recall and is fast, but yields noi-
sy results with mediocre or worse precision. Deep parsing (e.g.,
dependency parsing) and constraint-based reasoning (e.g., Markov
logic networks), on the other hand, are expensive and do not easily
scale to Web dimensions. Moreover, they tend to be overly con-
servative and miss out on recall. We are thus facing a threefold
trade-off between precision, recall, and scalability. This paper aims
to reconcile all three of these goals.

1.2 State of the Art and Open Problems
Prevalent approaches to automatic knowledge harvesting rough-
ly fall into two categories: pattern-based extractors and methods
that employ consistency constraint reasoning (or some form of
constraint-aware statistical learning).

In a pattern-based system (e.g., [6, 2, 5, 8]), seed facts like (Ger-
many, FIFA_World_Cup), as an instance of the teamWonTrophy re-
lation between soccer teams and trophies (which was true in 1974
and 1990), can automatically detect textual patterns like “X won
the final and became the Y champion” which in turn can disco-
ver new facts such as (Spain, FIFA_World_Cup) (which is true for
2010). While this is good for high recall, it may lead to noisy pat-
terns and degrading precision. For example, the same seed may
lead, after a few iterations, to frequent patterns such as X lost the
final of Y and erroneously pick up the false positive (Netherlands,
FIFA_World_Cup).

Reasoning-enhanced systems (e.g., [30, 37, 9]) check the plausi-
bility of the extracted fact candidates by their mutual consistency
based on specified logical constraints. For example, when a system
generates a candidate (Tim_Berners-Lee, Max_Planck) for the ha-
sAcademicAdvisor because of a spurious pattern X benefitted from
the deep insight of Y, a constraint-aware system can invalidate this
hypothesis by using prior knowledge about the birth year of Berners-
Lee (1955) and the death year of Planck (1947) and a rule that a

student must be born (or at least, say, 15 years old) before gradua-
ting. Similarly, type constraints can be used to eliminate false po-
sitives such as (Tim_Berners-Lee, Chelsea_Football_Club) for the
graduatedFrom relation.

Consistency reasoning is expensive and faces scalability pro-
blems. The ReadTheWeb project [9, 10] recently showed how to
parallelize a constraint-aware approach, using an ensemble-learning
method over coupled pattern learners. However, this method yields
relational pairs between names of entities rather than referring to
entities themselves. For example, the result may contain instances
such as (Real_Madrid_CF, Champions_League), (Real_Madrid, UE-
FA), (Real, UEFA_Champions_League) – three instances that refer
to the very same fact (the experiment in [10] reports on American
sports, e.g., returning Yankees and New York Yankees as if they were
different entities). This is much lower-quality knowledge than a ca-
nonical representation that would state the fact in terms of uniquely
named entities – (Real_Madrid_CF, UEFA_Champions_League) –
with a separate relation for capturing the synonyms of entities (e.g.,
means(Real, Real_Madrid_CF). Note that many names are ambi-
guous, so they appear in means facts for different entities. For ex-
ample, Wikipedia knows more than 20 soccer clubs called Real,
there are several currencies Real, and so on.

The SOFIE system [30], on which the current paper builds, com-
bines a pattern-gathering phase with a consistency-reasoning pha-
se. Experiments in [30] dealt with 1,000’s of input documents and
10,000’s of hypotheses in about 10 hours on a single computer.
Clearly, this is not good enough for Web scale. Moreover, while
precision was very high, the constraint-based reasoning severely
limited recall. To increase recall, one could relax the pattern gathe-
ring and allow more patterns and co-occurring fact candidates to
enter the reasoning phase. However, this entails two problems: 1)
efficiency: it presents the reasoner with a much larger hypotheses
space (more clauses for a Weighted-MaxSat solver [30]); 2) quali-
ty: it introduces noisy patterns such as “X played in the qualificati-
on round of Y” for teamWonTrophy, and sparsely occurring patterns
such as “P scored her third goal in the triumph of T” for the athlete-
PlaysForTeam relation, which is hardly generalizable for learning
given that female players have less coverage in Web sources and
“three” (goals in the same match) is a rare feature.

In summary, Web-scale knowledge harvesting is not yet as robust
and scalable as we wish it to be. Key issues are:
• non-canonical output: shallow and scalable methods yield pairs

of (ambiguous) names rather than truly entity-based facts;
• scalability: deep methods with constraint-based reasoning do

not scale and face efficiency challenges;
• limited recall: reconciling high precision with high recall is

challenging because of the need for and difficulty in dealing
with noisy and sparse patterns.

1.3 Contribution
This paper overcomes, to a large extent, the above problems and
shows how to reconcile high precision, high recall, and scalabili-
ty. Our solution, coined PROSPERA (PRospering knOwledge with
Scalability, PrEcision, and RecAll), is based on the SOFIE frame-
work [30], but includes major extensions along the following lines.

For pattern-based gathering of fact candidates, we introduce a
new notion of n-gram-itemset patterns. In prior work, patterns are
either consecutive substrings from the surface text that connects
two named entities in a document or words on the path of the lin-
kage graph that results from dependency-parsing the text. The for-
mer is noisy, the latter entails an expensive deep-parsing step. To
gather more interesting patterns in an inexpensive way but avoid

becoming even noisier, we define a pattern to be a set of variable-
length n-grams in the context of two entities, and we employ algo-
rithms for frequent-itemset mining to efficiently compute pattern
statistics. Moreover, we allow patterns to lift individual parts into
their corresponding part-of-speech tags (word categories); the re-
sulting generalized patterns have higher support. For example, the
lifted n-gram-itemset P { scored PRP ADJ goal; match for } T
covers all sentences with the two phrases regardless of which pro-
nouns (PRP) or adjectives (ADJ) are used and regardless of any
preceding, following, or intermediate text such as relative clauses
or appositions.

For constraint-based reasoning, we leverage SOFIE’s Weighted-
MaxSat solver, but use confidence measures from pattern gathering
for setting clauses weights. We also consider negative patterns that
often co-occur with entity pairs that are not in the relation of in-
terest. For example, if we specify upfront that (Netherlands, FI-
FA_World_Cup) is not an element of the teamWonTrophy relation,
then we can automatically detect that “lost the final” is a negati-
ve pattern; this will in turn downgrade the weights of clauses that
relate this pattern with fact candidates. As the reasoning still priori-
tizes precision over recall, the entire two-phase procedure is itera-
ted, with re-adjusted weights, yielding much higher recall than the
original SOFIE.

Finally, to gear up for Web-scale harvesting, we have developed a
new architecture where tasks of all phases can be distributed across
many computers and run in parallel. For the pattern gathering and
analysis, we partition by input sources, but ensure that the n-gram-
itemset mining benefits from global statistics. For the reasoning,
we employ graph-partitioning algorithms on the clauses graph and
construct parallel reasoning tasks. Tasks are mapped to distributed
machines using the Hadoop software.

In summary, the paper’s novel contributions are:
• rich and accurate patterns: a new notion of n-gram-itemsets

to generalize narrow patterns and more precisely capture noisy
patterns;
• clauses weighting: using confidence and support statistics from

the pattern-based phase for carefully weighting the reasoner’s
input clauses and re-weighting them in iterations of both pha-
ses;
• distributed architecture: organizing both phases in a way that

data and load can be partitioned across parallel machines for
better scalability;
• Web-scale experiments: demonstrating the run-time efficiency,

high precision, and high recall of our methods by performing
knowledge harvesting on the ClueWeb09 corpus (with 500 mil-
lion Web pages, boston.lti.cs.cmu.edu/Data/clueweb09/), com-
paring ourselves to the ReadTheWeb experiments of [10], and
outperforming their results by a large margin.

The n-gram-itemsets patterns have been introduced in prelimi-
nary form in our short workshop paper [21]. Here we show how
to scale this approach up to Web proportions. The other contribu-
tions are completely new. All data on the experiments reported he-
re are made available as supplementary material on the Web site
www.mpi-inf.mpg.de/yago-naga/prospera/.

2. RELATED WORK
Declarative approaches to information extraction, such as System
T [22], Cimple [26], or SQOUT [17] orchestrate pattern-matching
steps into execution plans which allow database-style optimizati-
ons. However, they are limited to deterministic patterns like regular

expressions and are not geared for dealing with the inherent uncer-
tainty of full-fledged natural language.

Pattern-based fact gathering (e.g. [6, 2, 12, 16, 5, 7, 36, 8]) is
bootstrapped with seed facts for given relations and automatical-
ly iterates, in an almost unsupervised manner, between collecting
text patterns that contain facts and finding new fact candidates that
co-occur with patterns. Statistical measures such as PMI are used
to assess the goodness of newly found facts and of characteristic
patterns. This is a powerful machinery for high recall, but it often
leads to noisy patterns and may easily drift away from the target
relations.

Statistical-learning methods for relational graphs (e.g. [23, 15,
11, 37, 9, 24]) aim to overcome these problems by incorporating
probabilistically weighted rules for coupling the random variables
that denote whether fact candidates are true or false, and then using
joint inference over all fact candidates together. This is a power-
ful for higher precision, but it tends to reduce recall and has high
computational cost as inference is typically based on Markov-chain
Monte-Carlo methods such as Gibbs sampling. Note that large-
scale knowledge harvesting can easily lead to situations with hun-
dred thousands of highly intertwined random variables.

The ReadTheWeb project [9] has recently shown how to paralle-
lize such a method for large-scale knowledge gathering, using an
ensemble-learning approach with coupled pattern learners. In the
NELL experiment [10], it produced about 230,000 facts for 123
different categories (unary relations) and 12,000 facts for 55 dif-
ferent types of binary relations from a large Web corpus with 500
million pages (a variant of the ClueWeb09 corpus). Although this is
the largest-scale experiment of this kind in the literature, it does ha-
ve notable limitations. First, its recall on binary relations - our pri-
mary focus - was rather low: only 12,000 facts after 66 days, and
quite a few of the 55 relations acquired less than 100 facts. Note
that one could retrieve the instances of unary relations (categories)
much more easily from existing knowledge bases such as DBpedia
or YAGO; the real difficulty lies in binary relations. Second, the
experiment involved some human interaction on a daily basis, after
each iteration of rule learning, to manually remove bad extraction
rules. Third, the output refers to non-canonical names rather than
uniquely identified entities. The entire experiment ran more than 60
days on a large cluster. In the current paper, we use the ReadThe-
Web results (which – thanks to the authors – are available on the
Web) as a yardstick against which we measure our approach.

Reasoning-based methods with prior knowledge such as SOFIE
[30] leverage knowledge about entities and their types. SOFIE de-
composes the entire fact harvesting into two phases: 1) pattern-
based gathering of candidates for high recall, 2) reasoning about
candidates and constraints for high precision. In contrast to the abo-
ve mentioned learning methods, there is no probabilistic interpre-
tation over “possible worlds”; instead all hypotheses are organized
into a set of propositional-logic clauses with informative weights
derived from pattern statistics. Then a customized approximation
algorithm for Weighted-Maximum-Satisfiability (MaxSat) is em-
ployed to identify a subset of fact candidates and characteristic pat-
terns that together constitute “the truth”. Constraints include func-
tional dependencies, inclusion dependencies, type constraints, and
more. Type information is extremely beneficial in early pruning of
the search space of the MaxSat solver; for example, the first argu-
ment of the teamWonTrophy relation must be of type sportsTeam,
as opposed to say businessEnterprise (which immediately rules out
the hypotheses that Google has won the FIFA World Cup). The
mapping of names onto entities can either be encoded into the clau-
ses set, or carried out before the reasoning by using pre-existing
knowledge like the YAGO ontology [29] which knows more than 2

million entities organized in ca. 200,000 semantic classes and has
a rich repository of synonyms gathered from redirection pages. and
hyperlink anchor texts in Wikipedia.

3. PROSPERA ARCHITECTURE
We are given a set of binary relations R1, . . . , Rm of interest, each
with a type signature and a small set of seed facts and, optionally,
a set of counter-seeds. The latter are entity pairs that are asserted
to be definitely not among the instances of a given relation (e.g.,
(USA, FIFA_World_Cup) for the teamWonTrophy relation. We as-
sume that we have an existing knowledge base with typed entities,
which more or less includes all individual entities and their types
(e.g., footballPlayer). In our experiments, we use YAGO [29] for
this purpose, which provides us with more than 2 million richly
typed entities and a fairly complete dictionary of the possible mea-
nings of a surface string. The YAGO means relation explicitly maps
surface strings onto individual entities. This does not yet resolve
any name-entity ambiguity, though (see below).

We now consider a textual corpus, e.g., a set of Wikipedia artic-
les, Web pages, or news articles, as input for harvesting facts about
the relations of interest. PROSPERA processes this data in three
phases:

1. Pattern gathering: This phase identifies triples of the form
(e1, p, e2) where e1 and e2 are any two entities, each occur-
ring in a different noun phrase, and p is a surface string that
appears between e1 and e2. As sentences contain merely na-
mes rather than entities, we determine all possible mappings
using the means relation of YAGO and then use a disam-
biguation heuristics based on context similarities. We form
a text-window-based bag of words around the name, and a
bag-of-words context around each entity that the name could
possibly be mapped to. For the latter, we use the type names
of the entities in YAGO (which include names of Wikipe-
dia categories to which the entity belongs). The entity whose
context has the highest word-level overlap with the name’s
bag of words is chosen for the name-to-entity mapping.

2. Pattern analysis: This phase generalizes the basic patterns
from the previous step by transforming them from long, over-
ly specific phrases into sets of n-grams succinctly reflecting
the important sub-patterns. We also compute statistics and
similarity measures about patterns and use them to genera-
te fact candidates. The pattern analysis is further detailed in
Section 4.

3. Reasoning: This step complements the statistical evidence of
the previous phase with logical plausibility for high precisi-
on. The fact candidates are passed to a MaxSat-based reaso-
ner which considers prespecified contraints to ensure mutual
consistency of accepted facts and their compatibility with the
consistency constraints. The reasoning phase is further detai-
led in Section 5.

Our experiments demonstrate that the disambiguation heuristic
is very powerful and fairly accurate. Employing this name-entity
mapping upfront is a departure from the SOFIE architecture, whe-
re entity disambiguation was part of the constraint-based reasoning
[30] (and similar techniques were also used in other approaches,
e.g., based on Markov logic or factor graphs [15, 33]). However, in-
tegrating name-entity mapping into consistency reasoning has high
computational cost as it leads to a much larger space of clauses and
Weighted MaxSat is an NP-hard problem with inherent combinato-
rial complexity. Our streamlined approach in this paper is efficient
and scales very well to Web proportions.

Pattern Gathering

Reasoning

seed examples counter examples

fact
candidates

phrase patternsentity pairs

Pattern Analysis

n-gram-itemset
patterns

rejected
candidates

accepted
facts

Figure 1: Architecture of the PROSPERA System.

As we will explain later, each of the three phases can be par-
allelized on a distributed platform. Moreoever, we can iterate the
three phases by feeding the output of the reasoner back into the
pattern gathering, treating newly found facts as additional seeds for
the next iteration. While such feedback loops are well studied for
knowledge-harvesting methods that are exclusively pattern-based,
such as [6, 2, 5], our approach distinguishes itself from that pre-
vious work by including the reasoning phase in each iteration. This
strengthens the choice of next-iteration seeds and ensures that pre-
cision is kept high. The overall architecture of PROSPERA is illu-
strated in Figure 1.

4. PATTERN ANALYSIS

4.1 Seed Patterns
The basic pattern phrases from the pattern gathering phase are fed
into a frequent n-gram-itemset mining algorithm for identifying
strong patterns. For example, for the hasAcademicAdvisor relation,
the pattern gathering may yield a sentence like “Barbara Liskov
was the first woman in the US who was honored with the title of
a doctor of philosophy (Ph.D.) from a technical department at St-
anford University”. Such a long and extremely specific phrase does
not generalize, as there are hardly any other entity pairs with ex-
actly the same pattern. A standard technique would be to consider
a subsequence as a better pattern, for example, the substring “was
honored with the title of a doctor of philosophy”. But even this is
overly specific and would occur very sparsely in the corpus.

To overcome this problem, we break down the phrases into variable-
length n-grams of successive words, i.e., multiple n-grams per phra-
se. Then a much better pattern would be the n-gram-itemset consi-
sting of three n-grams: { honored with; doctor of philosophy; Ph.D.
}. A new sentence is a candidate for containing a fact if it con-
tains all three n-grams, not necessarily consecutively and possibly
in a different order, or at least a large subset of this n-gram-itemset.
For efficiently generating the n-gram-itemset patterns, we apply the
technique of frequent itemset mining [3, 28] which has been widely
used to discover interesting relations among items in databases.

Often, there is a variety of different wordings regarding pronouns
or injected adjectives that render n-grams sparse. For example, be-
cause of the variations “received his” and “received her”, we may
dismiss good n-grams as too infrequent. To overcome this issue, we
run part-of-speech (POS) tagging on each of the originally gathered
sentences, assigning word categories like nouns, verbs, pronouns,

etc. to each of the words. We tenatively replace words with their
POS tags, to obtain a more general form of n-grams that we refer
to as lifted patterns. We focus on POS tags for pronouns, prepositi-
ons, articles, and adjectives. This way we can generalize the above
pattern into the lifted form “received PRP” where PRP denotes an
arbitrary pronoun.
Definition 1: Given a set SX(Ri) of seed examples for a relation
Ri and an input set S of sentences (or, more generally, token se-
quences), a basic pattern p is a sequence such that e1 p e2 occurs
in S for at least one pair (e1, e2) ∈ SX(Ri). A lifted pattern is
a pattern p where all words with certain POS tags are replaced by
their tags. An n-gram itemset pattern is a set Q for which there is
at least one sequence s ∈ S that can be written as s = h e1 p e2 t
with a seed example (e1, e2) ∈ SX(Ri) such that for all q ∈ Q
the length of q is at most n words (tokens) and q is a subsequence
of p.

To assess the goodness of an n-gram-itemset pattern, we com-
pute the following statistics about co-occurrence of patterns with
seed examples and counterexamples. Support captures the frequen-
cy of a pattern in conjunction with a seed fact, whereas confidence
reflects the ratio of the pattern co-occurring with seed facts versus
counter-seeds.
Definition 2: For sets SX(Ri) and CX(Ri) of seed examples and
counterexamples and an input set S of sentences, a basic (or lifted)
pattern q has support(q) =

|{s ∈ S|∃(e1, e2) ∈ SX(Ri) : q, e1, e2 occur in s}|
|S|

and confidence(q) =

|{s ∈ S|∃(e1, e2) ∈ SX(Ri) : q, e1, e2 occur in s}|
|{s ∈ S|∃(e1, e2) ∈ SX(Ri) ∪ CX(Ri) : q, e1, e2 occur in s}|
Definition 3: An n-gram-itemset pattern q, for given SX(Ri),CX(Ri),
and input set S of sentences, is called a seed pattern if both support(q)
and confidence(q) are above specified thresholds. Pattern q is as-
sociated with a seed-pattern weight, set to

weight(q) = α× support(q) + (1− α)× confidence(q)

In our experiments, we used only confidence values and disregar-
ded support for the weighting (α = 0).

4.2 Fact Candidates
The seed patterns are used to discover new fact candidates. We con-
sider all sentences s ∈ S that contain two entities (x, y) of appro-
priate types for Ri (e.g., a person and a university for the hasAca-
demicAdvisor relation) and whose subsequence p in s = h x p y t
in between the two entities x, y partially matches one of the seed
patterns. The goodness of the match is quantified by the Jaccard
similarity

sim(p, q) =
|{n-grams ∈ p} ∩ {n-grams ∈ q}|
|n-grams ∈ p} ∪ n-grams ∈ q}|

This approximate matching of p against all seed patterns q is ef-
ficiently implemented by lookups in an n-gram index constructed
from the seed patterns.

We process all input sentences s = h x p y t this way, and
again perform frequent-itemset mining to concentrate on the set
of patterns to those with support above a specified threshold. The
output of this step is a multi-set of weighted triples (x, y, p)[w]
where (x, y) is a fact candidate, p is an n-gram-itemset pattern,
and w is the highest pattern-matching similarity of p with any seed
pattern q. Note that it is a multi-set rather than a set because the
same candidate can be encountered several times.

Definition 4: For given input set S and seed-pattern setQ, the fact-
pattern candidate multi-set C(S, P) is:
C(S, P) = {(x, y, p)[w] | ∃s ∈ S : s contains x, y, p ∧

w = max{sim(p, q)× weight(q)|q ∈ Q}}

Finally, we can aggregate the fact-pattern candidates in C, grou-
ping them either by fact candidates, to compute a strength mea-
sure of the potentially new fact, or by patterns, to quantify the
goodness of a pattern. For fact candidates (x, y), the aggregated
weight is: weight(x, y) =

∑
{w|(x, y, p)[w] ∈ C}. For an n-

gram-itemset patterns p, the aggregated weight is: weight(p) =∑
{w|(x, y, p)[w] ∈ C}.
We can interpret these weights as the statistical evidence that

(x, y) is a valid fact and p is a good pattern for further extraction
steps for Ri. Note that the two weights are quite different, as the
aggregations are computed over different sets.

5. REASONING
Following the work on SOFIE [30], the new PROSPERA system
also uses constraints on hypotheses to prune false positives and im-
prove precision. In contrast to [9, 10], we include constraints on
the duality of patterns and facts, and we harness the rich knowled-
ge about entity types provided by YAGO. In addition, we specify
functional dependencies, inclusion dependencies, relation proper-
ties such as symmetry, antisymmetry, or inverse relations, as well
as domain-specific constraints whenever possible. The constraints
are manually specified upfront, but in all our experiments this was
merely a matter of a few minutes. Typical constraints look as fol-
lows, with variables p, e1, e2, e3 for patterns and entities and given
relations R,S, T :

occurs(p, e1, e2) ∧ type(e1, dom(R)) ∧ type(e2, range(R))
∧ expresses(p,R) ⇒ R(e1, e2) //pattern-fact duality

occurs(p, e1, e2) ∧ type(e1, dom(R)) ∧ type(e2, range(R))
∧R(e1, e2) ⇒ expresses(p,R) //pattern-fact duality

R(e1, e2) ∧ type(R, function) ∧ different(e2, e3)
⇒ ¬R(e1, e3) //functional dependency

R(e1, e2) ∧ sub(R,S) ⇒ S(e1, e2) //inclusion dependency
R(e1, e2) ∧ inv(R, T) ⇒ T (e2, e1) //inverse relations
T (e1, e2) ∧ inv(R, T)⇒ R(e2, e1) //inverse relations

For the actual reasoning procedure, the constraints are grounded
by substituting all meaningful constants – concrete patterns and en-
tities – into the constraint formulas, thus providing us with a set of
propositional-logic clauses. We can handle clauses with several ne-
gative literals, whereas rule-induction methods (e.g., the one used
in [9, 10]), are typically restricted to Horn clauses. For example,
for the graduatedFrom relation (assuming that it were a function: it
refers only to Ph.D. degrees and one can obtain a Ph.D. only from
one university), the grounding procedure generates clauses such as:

occurs(and PRP alma mater, Barbara_Liskov, Stanford_University)
∧ expresses(and PRP alma mater, graduatedFrom)
⇒ graduatedFrom(Barbara_Liskov, Stanford_University)

graduatedFrom(Barbara_Liskov, Stanford_University)
⇒ ¬graduatedFrom(Barbara_Liskov, UC_Berkeley)

graduatedFrom(Barbara_Liskov, UC_Berkeley)
⇒ ¬graduatedFrom(Barbara_Liskov, Stanford_University)

Note that the grounding already evaluates predicates that have
only constants as arguments. For example, the different predicate
between two entities is directly set to true or false, thus simplify-
ing the resulting clauses. Most importantly, the type predicates are
evaluated at this stage, too. For entities that do not obey the ty-
pe signature of the relation at hand, the antecedent of the clause
evaluates to false so that the entire clause can be eliminated. This
massive pruning of clauses from the hypotheses space greatly redu-
ces the reasoner’s load. The efficiency gain is possible because of

the rich type information about entities that YAGO provides. Such
optimizations were not possible in earlier work on reasoning-based
information extraction such as [15]. The recent work of [9, 10] con-
sidered type information, too, but only in the form of coupling the
pattern-based learners for binary relations with those of unary ones.
Note, however, that this was at the level of non-canonical (often am-
biguous) names rather than uniquely identified entities; so it is not
as clean and powerful as our rigorous typing at the entity level.

The grounded clauses are weighted, and then we finally run the
Weighted-MaxSat reasoner of [30]. This computes truth values for
all hypotheses on the expresses and R(., .) predicates for all re-
lations R and all instantiated constants (patterns and entities), such
that the total weight of the clauses that are satisfied by this truth-
value-assignment becomes as large as possible. The algorithm can
only approximate the maximum of this objective function, given
that MaxSat is NP-hard and our algorithm runs on hundred thou-
sands of clauses with ten thousands of variables (= fact/pattern hy-
potheses).

The weights of clauses are derived from the pattern-confidence
measures computed in the pattern analysis phase. This is a major
departure from earlier work on reasoning-based information ex-
traction: SOFIE used uniform weights except for entity disambi-
guation [30] and the work with Markov logic networks advocated
setting weights by frequency analysis of the fact candidates (the
“uncertain database”) [15]. In PROSPERA, we associate the ante-
cedent of a clause with a confidence weight about its constituent
literals (elementary logical atoms). Specifically, for clauses of the
form occurs(p, e1, e2) ∧ expresses(p,R) ⇒ R(e1, e2), we use
the confidence weight of the pattern p (see Section 4) as the weight
of the entire clause. For clauses of the form occurs(p, e1, e2) ∧
R(e1, e2)⇒ expresses(p, e1, w2) we analogously use the confi-
dence weight of the fact candidate R(e1, e2) (see Section 4). The
frequency of observing p, e1, e2 together (the occurs predicate) is
irrelevant, as this would unduly boost frequent observations regard-
less of their quality.

Our experiments show that the reasoner becomes much more ro-
bust by using the above weights, which are essentially dependent
on seed facts (and the derived seed patterns). Clauses derived from
functional dependencies, relational properties, or domain-specific
consistency rules are given uniform weights.

6. DISTRIBUTED IMPLEMENTATION
To scale out our knowledge-harvesting system, we adopted the Ma-
pReduce programming model [13, 34] based on the abstractions
of mappers and reducers. Mappers specify the computation that
should be performed on each input record. Reducers specify how
the output of the mappers should be aggregated to generate the fi-
nal results. MapReduce computation is solely based on key-value
pairs. Mappers work on input key-value pairs and generate interme-
diate key-value pairs. Reducers consume these intermediate pairs,
with the same intermediate keys being passed to the same redu-
cer. Reducers aggregate intermediate keys to emit output key-value
pairs.

We have developed MapReduce algorithms for the three main
phases of our architecture. We used the Hadoop open source im-
plementation [34] and the HDFS distributed filesystem [27].

6.1 Pattern Gathering
Parsing documents for pattern gathering is trivially parallelizable
as each document is scanned independently. No coordination is re-
quired between concurrent worker tasks. The input to the mappers
are document identifiers (keys) and the corresponding document
contents (values).

1. FUNCTION map(i, Pi)
2. List N ← generateNgrams(Pi)
3. FOR ni ∈ N DO
4. emit(ni,1)

1. FUNCTION reduce(ni, [v1, v2, v3, ...])
2. support← 0
3. FOR vi ∈ [v1, v2, v3, ...] DO
4. support← support+ vi
5. IF support ≥MINSUPPORT
6. emit(ni, support)

Figure 2: MapReduce pseudo-code for frequent n-gram-
itemset mining

The mapper performs checks on the sentences of the document,
emitting triples of the form (e1, p, e2) for any pair of interesting
entities e1 and e2. Additional processing of sentences, such as ge-
nerating part-of-speech tags, is also performed in the mapper. Here
the reducer merely serves the purpose of sorting and aggregating
the emitted triples.

6.2 Pattern Analysis
The pattern analysis phase computes quality measures for seed pat-
terns and uses these to generate fact candidates. The results of the
pattern analysis phase are accomplished by a sequence of MapRe-
duce algorithms; here we focus on the major tasks and how to dis-
tribute/parallelize them.
Generate N-gram-Itemset Patterns. The n-gram-itemset patterns
are the primary representation on which pattern-similarity com-
putation is based. Thus, the first task is to convert the previous-
ly collected raw patterns into this format. This entails identify-
ing frequently co-occurring n-grams within the basic patterns via
frequent-itemset mining [3]. To reduce the size of the input data to
subsequent algorithms, we introduce a preprocessing step to per-
form dictionary encoding by replacing words and patterns with in-
teger identifiers.

The pseudo-code for computing frequent itemsets is shown in Fi-
gure 2. The input to the mapper consists of the key-value pair of the
pattern identifier (key) and the pattern itself (value). For each input
pattern, mappers generate constituent n-grams and emit, for each n-
gram, an intermediate key-value pair consisting of the (dictionary-
compressed) n-gram as the key and a support of 1 as the value. The
reducers gather support counts for any given n-gram and sum them
up to obtain the final support counts. Only those n-grams whose
support is above the specified values are emitted. Note that sequen-
tial algorithms for frequent-itemset mining are typically optimized
to eliminate non-frequent itemsets as early as possible. When ge-
nerating frequent itemsets of cardinality (or length in our case) k,
the algorithm first prunes all infrequent (k-1)-grams. In contrast,
our MapReduce algorithm greedily generates all itemsets and does
batch pruning in the reducers. This is advantageous because 1) we
are only interested in relatively short n-grams, typically 3-grams,
and 2) the MapReduce paradigm is designed for batch processing
and works best if coordination and communication across worker
tasks is kept to a minimum.

Once we have the frequent n-gram itemsets, a second MapRe-
duce algorithm (not shown here), is used to rewrite patterns into
a form with frequent n-grams only, disregarding infrequent ones.
This way we end up with n-gram-itemset patterns.
Compute Seed Pattern Confidence Values. Once all the patterns
are in n-gram-itemset representation, we need to identify the seed

1. FUNCTION map(i, [e1, p,e2])
2. IF isSeedPattern(p)
3. FOR r ∈ R DO
4. SeedOccurrence O← [r, e1,e2]
5. emit(p.id, O)

1. FUNCTION reduce(p.id, [O1, O2, O3, ...])
2. List L← { }
3. FOR O ∈ [O1, O2, O3, ...] DO
4. L.append(O)
5. emit(p.id, L)

Figure 3: MapReduce pseudo-code for seed pattern confidence

patterns and compute their confidence values. To this end, we need
to determine how often the pattern co-occurs with seed facts and
how often it co-occurs with counter-seeds. We have developed two
MapReduce algorithms for this purpose. The first one, shown in
Figure 3, identifies seed patterns and tracks pattern-occurrence in-
formation. In each mapper, the (e1, p, e2) triples from the pattern-
gathering phase are processed to test if p is a seed pattern. The
mappers emit intermediate key-value pairs with the pattern identi-
fier as the key and the seed occurrence as the value. The reducers
combine all seed occurrences belonging to one pattern and emit all
seed occurrences of every seed pattern. A second MapReduce algo-
rithm (not shown here) uses this data to compute pattern confidence
values.
Generate Fact Candidates. The large majority of the [e1, p,e2]
triples from the pattern gathering have patterns p that do not pre-
cisely match any seed pattern. To identify new fact candidates and
quantify their statistical evidence, we conceptually compute the si-
milarity of pwith all partially matching seed patterns q based on the
Jaccard coefficient of the corresponding n-gram sets (see Section 4)

The easiest implementation would be an exhaustive algorithm
where a mapper computes the similarity of a given pattern with all
seed patterns and then emits the best (partial) match. However, this
would have high computational costs because of many unnecessary
comparisons. To accelerate the computation, we first build an inver-
ted index on the n-grams of the seed patterns and use it to compute
similarity scores more efficiently. For building the index, we fol-
low standard MapReduce practice [13]. The optimized algorithm is
shown in Figure 4.

The mappers consume non-seed patterns, with the pattern iden-
tifier as the key and the n-gram-itemset as the value. Each mapper
first loads its relevant partition of the seed n-gram index and pattern
confidence values into memory. Hadoop allows mappers to preser-
ve state across different input pairs, therefore this information is
loaded only once during the Hadoop job initialization. The mapper
uses the index to compute matches between seed patterns and non-
seed patterns. For each such match, the similarity score between
the seed pattern and the non-seed pattern pi is computed and added
to a priority queue. The mapper then emits an output key-value pair
consisting of the pattern identifier and the best matching seed pat-
tern. This information is then passed down to the reasoner which
makes the final decision on the goodness of the patterns during a
given iteration.

6.3 Reasoning
To parallelize the MaxSat-based reasoning, the hypotheses about
fact candidates and pattern goodness are formulated as a graph.
Each fact candidate or pattern forms a vertex in the graph, and an
edge is added between two vertices if they appear in a joint clause.

Relation # Extractions Precision Precision@1000

PROSPERA-6 NELL-6 NELL-66 PROSPERA-6 NELL-6 NELL-66 PROSPERA-6
AthletePlaysForTeam 14,685 29 456 82% 100% 100% 100%
CoachCoachesTeam 1,013 57 329 88% 100% 100% n/a
TeamPlaysAgainstTeam 15,170 83 1,068 89% 96% 99% 100%
TeamWonTrophy 98 29 397 94% 88% 68% n/a

AthletePlaysInLeague 3,920 2 641 94% n/a n/a n/a
TeamPlaysInLeague 1,920 62 288 89% n/a n/a n/a

AthleteWonTrophy 10 n/a n/a 90% n/a n/a n/a
CoachCoachesInLeague 676 n/a n/a 99% n/a n/a n/a
TeamMate 19,666 n/a n/a 86% n/a n/a 100%

Table 1: Performance comparison between PROSPERA and NELL on sports relations

1. FUNCTION map(i, pi)
2. I ← loadSeedNgramIndex()
3. C ← loadSeedPatternConfidenceValues()
4. PriorityQueue Q← { }
5. List H ← computeHits(p, I , C)
6. FOR h ∈H DO
7. h.similarity = computeSimilarity(pi, h.seedPattern)
8. Q.insert(h, h.similary)
9. emit(Q.removeMin())

Figure 4: Mapper pseudo-code for pattern similarity and fact-
candidate extraction.

Then the entire graph is partitioned into approximately equal parts,
such that the number of edges that connect vertices in different par-
titions is minimized. Note that this approach may now disregard
some constraints, but as MaxSat is an NP-hard problem our soluti-
on is approximate anyway. The fewer cross-partition edges are cut,
the more constraints are preserved by the parallelized reasoning.
Generating the graph is specified as a MapReduce job, the graph is
then partitioned into k partitions, and the partitions are processed in
parallel by reasoners on different compute nodes of the distributed
platform.

The minimum-cut graph partitioning problem is also NP-complete.
We employed a randomized, two-phase graph partitioning algo-
rithm, based on methods by [18] and [19].

Phase one coarsens the graph into a smaller graph that is a good
representation of the original graph. The coarsening reduces the si-
ze of graph by edge contraction until the graph is small enough.
The basic technique is to pick an edge connecting vertices u and v
and collapse the two vertices: a new vertex w replaces u and v. Ed-
ges previously linking u and v to other vertices are updated to point
to the new vertex w. If both u and v have edges to another vertex z,
then the weight of the edge from w to z is the sum of the weights of
the two edges. This helps to ensure that a balanced partitioning of
the smaller graph is also an approximately balanced partitioning in
the original graph. In picking the edges to contract, we heuristical-
ly favor edges that contribute more to the overall min-cut objective
function. These are the heavy edges in the coarsened graph. Initi-
ally, all edges have the same uniform weight, but as vertices are
collapsed, some edges obtain higher weights. In each step, we ran-
domly select a vertex and then choose its incident edge with the
highest weight for contraction. This guards the edge from being
cut in the second phase of the overall algorithm.

Phase two partitions the coarser graph and projects the resulting
partitions back into the original graph. Once a coarsened graph with
a specified maximum number of vertices is obtained, it is then di-
rectly partitioned into k partitions. We use graph-growing heuristics
[19] to derive k partitions from the coarsened graph. For each k, we
randomly select a vertex and grow a region around it until |V |/k
vertices are included, picking vertices that lead to smaller increase
in the weight of the edges that are cut.

In our experiments, partitioning the graph this way did not nota-
bly affect the output quality of the Weighted-MaxSat solver, which
is only an approximation algorithm anyway. The time for graph
partitioning was short, usually 5 minutes at most for graphs with
several 100,000’s of vertices.

7. EXPERIMENTAL EVALUATION

7.1 Setup
Large-scale experiments were carried out on the English part of the
ClueWeb09 corpus, which consists of 500 million English-language
Web pages. Evaluations reported here were restricted to binary re-
lations between entity pairs. We focused on two domains: 9 rela-
tions from the sports domain and 5 relations from the domain of
academic relationships.

The sports domain was chosen in order to compare our PROSPE-
RA approach to the results of the NELL (Never Ending Language
Learning) experiment reported in [10], which had strong coverage
of the sports relations and – very laudably – made all relevant da-
ta available on the ReadTheWeb site. To our knowledge, NELL is
so far the largest and most ambitious experiment along these lines,
with online data against which we could meaningfully compare our
approach. We used the very same input as NELL: 10–15 seed facts
and 5 counter-examples for each relation. In contrast to NELL, we
did not have any human intervention during our runs. Also, NELL
allowed 5 manually specified seed patterns as a-priori input, whe-
reas PROSPERA used only seed facts and determined patterns au-
tonomously.

The sports domain has no constraints other than type constraints;
there are not even any functional dependencies. The academic do-
main, on the other hand, is an interesting choice as it has sophisti-
cated constraints posing a stress-test to the reasoning phase in our
PROSPERA system. For the academic relations, we used seeds ob-
tained from the YAGO ontology. All instances for a given relation
already in the ontology were treated as seeds. Counter-seeds were
derived from instances of other relations in YAGO.

All experiments were performed on a Hadoop (0.20.1) cluster

with 10 server-class machines. Each machine has a Dual-Xenon
E5530 2.4 GHz processor (16 physical cores), 48 GB RAM (DDR3),
1.5 TB iSCSI storage, and 1 Gbit Ethernet interconnect. The NELL
experiment ran on the Yahoo! M45 supercomputing cluster, but no
statements were given about the number of nodes used and their
utilization.

Performance metrics of interest are recall, precision, and run-
times. Here recall refers to the number of extracted facts which are
returned by each of the knowledge-harvesting systems, as there is
no way of estimating the total number of truly correct facts that
appear (in latent form with natural language) in the entire corpus.
Precision was estimated by sampling the harvested facts and having
a human judge assess their correctness. As our runs yielded much
higher recall than NELL, we also ranked the resulting facts by their
confidence and additionally determined the precison@1000 for the
1000 highest-ranked facts of the largest relations. All precision as-
sessments are based on 50 randomly sampled facts for each relati-
on.

All data on the experiments reported here are made available as
supplementary material on the Web site www.mpi-inf.mpg.de/yago-
naga/prospera/.

7.2 Scalability Experiment (Sports Relations)
The scalability experiment aimed to evaluate the performance of
our approach on large and noisy data for all three performance me-
trics. Table 1 shows the results of the experiment on sports relati-
ons. PROSPERA ran 6 iterations, and NELL ran 66 in total. We
compare PROSPERA-6 (6 iterations) against NELL-6 (first 6 itera-
tions) and NELL-66 (all 66 iterations). For the first four relations,
both precision and recall numbers for NELL are given in [10] and
its supplementary material. NELL was run on the other relations as
well, but no recall/precision numbers were given.

PROSPERA has orders-of-magnitude higher numbers of extrac-
tions compared to NELL-6. Even NELL-66 still had substantial-
ly fewer results than PROSPERA. On the other hand, NELL had
precision close to 100% for most of these relations, except for the
TeamWonTrophy. For this relation NELL-6 has precision of 88%
and further degradation can be seen in NELL-66 at 68%. General-
ly, [10] reported that NELL’s precision would gradually go down
with larger numbers of iterations. In contrast, PROSPERA’s preci-
sion was consistently good and hardly varied across iterations. For
the TeamWonTrophy relation, PROSPERA outperformed NELL on
precision, for the other relations is was somewhat worse than NELL
but still well above 80%. Note, however, that the precision across
all extractions is misleading here, as PROSPERA returned a much
higher number of facts. We also evaluated the precison@1000 for
the largest relations. Here, PROSPERA achieved 100%. So over-
all, our approach essentially achieved the same precision as NELL
while giving much higher recall.

PROSPERA produces high-quality extractions in canonical form:
relational facts between disambiguated entities. For example, across
all extractions, all relational facts involving the team Chicago Bulls,
always use the same consistent identifier for this team. This is dif-
ferent from the NELL output which has facts referring to names,
returning, for example, both the Bulls and the Chicago Bulls. Our
approach includes entity disambiguation, thus recognizing, based
on the context of the name occurrence, if the string “Bulls” refers
to the entity Chicago_Bulls or some other team with the ending
“Bulls”. Table 2 shows disambiguated output from PROSPERA in
comparison to NELL extractions.

The total run-time of PROSPERA was about 2.5 days for the 6
iterations on the sports domain. This is in contrast to NELL’s 6 or
66 days for the first 6 or all iterations, respectively. Note that NELL

ran on a much larger cluster but also extract other relations and
categories that we did not consider in our experiments. So the run-
time numbers are not directly comparable. Nevertheless, especially
in view of our much higher recall, the PROSPERA run-times look
favorable.

In this experiment, the MaxSat-based reasoning constitutes only
a small percentage of the total run-time. This is illustrated in Figu-
re 5(a) where in every iteration, pattern analysis (the bottom part)
took between 4 to 6 hours while reasoning took less than an hour.
Not shown in Figure 5(a) is the run-time of the preprocessing for
pattern gathering, which took approximately 20 hours. This time is
included in the total figure of 2.5 days for gathering and 6 itera-
tions of analyis and reasoning. Figure 5(b) shows that the number
of extractions consistently increases over iterations; running more
iterations would probably lead to further extractions.

Figure 5: PROSPERA runtimes on the sports domain (a) and
number of extractions across iterations (b).

To determine how individual components of our approach contri-
bute to performance, we ran additional measurements with different
variants of PROSPERA, selectively disabling one component at a
time. For this study, we ran only 2 iterations. As the results in Table
3 show, reasoning plays a significant role in ensuring high precisi-
on. Without the reasoner, precision would be only 31%. Reasoning
about the quality of the patterns ensures that patterns whose quality
is uncertain do not lead to extractions. This initially leads to much
lower recall, but for a good pattern, subsequent iterations gather
enough support for the pattern. Thus, such a pattern is eventually
accepted by later iterations of the reasoner, leading to increased re-
call over successive iterations. For example, in the first iteration,
starting with the initial seed facts, the pattern “would beat the” on-
ly had a confidence weight of 0.5 for expressing the TeamPlaysA-
gainstTeam relation. By the fourth iteration, evidence in support of
this pattern escalated and its confidence weight increased to 0.96.

Relation PROSPERA NELL
AthletePlaysForTeam (Ben_Gordon, Chicago_Bulls) (Ben Gordon, Bulls)
TeamPlaysInLeague (Chicago_Bulls, National_Basketball_Association) (Chicago Bulls, NBA)
AthletePlaysForTeam (Jason_Giambi, New_York_Yankees) (Jason Giambi, Yankees)
TeamPlaysAgaintsTeam (San_Francisco_Giants, New_York_Yankees) (Giants, New York Yankees)
AthletePlaysForTeam (Ben_Graham_(footballer), Arizona_Cardinals) n/a
AthletePlaysForTeam (Edgar_Gonzalez_(infielder), St._Louis_Cardinals) n/a
TeamMate (Metro_Prystai, Jim_Henry_(ice_hockey)) n/a

Table 2: Sample output from PROSPERA and NELL

Note that all this is fully automated in PROSPERA, whereas NELL
had some manually designed seed patterns and used a small amount
of human supervision after each iteration.

The confidence weights also play a vital role in the quality of
our output, both for pruning bad patterns and for providing better
statistical evidence to the reasoner about which candidates are mo-
re likely to be true. Without the use of weights, precision drops to
73%. On noisy Web data like the ClueWeb09 corpus, the new no-
tion of n-gram-itemset patterns with confidence weights pays off
well.

Method # Precision Runtime (hours)
extractions

Full-PROSPERA 3,174 90% 8.37
NoReasoner 157,610 31% 8.22
Unweighted 8,429 73% 8.32

Table 3: PROSPERA variants on sports relations (2 iterations).

To determine speedup obtained by parallelizing the reasoner, we
reduced the number of reasoners by half and measured run-times
for reasoning in the first iteration. Using half the reasoners, 5 in
total (on 5 nodes of the cluster), took 7.6 minutes compared to 3.5
minutes when using 10 reasoners. This suggests a slightly superli-
near speedup of 2.2, which is attributed to the fact that partitioning
the candidate graph reduces the search space of the reasoner, resul-
ting in faster execution times.

7.3 Constraints Experiment (Academic Relations)
As the sports-domain experiment did not have any advanced cons-
traints, we carried out a second experiment that aimed to stress-test
the constraint reasoning aspect of PROSPERA on five academic
relations. We specified the following constraints in first-order lo-
gic:
• a student can have only one alma mater that she/he graduated

from (with a doctoral degree);
• a student can have only one doctoral advisor (who had this role

officially);
• the advisor of a student must have had a position at the univer-

sity from which the student graduated;
• the advisor of a student must be older than her/his student.

We ran PROSPERA for two iterations only, using seed facts from
the YAGO ontology; the results are shown in Table 5. Both the
number of extractions and precision are high with the exception of
the hasAcademicAdvisor relation which returned only few extrac-
tions with mediocre precision. Here, our approach of consistenly
referring to canonical entities became unfavorable, as we could ac-
cept only facts where both student and advisor are known to YA-
GO (or Wikipedia, on which YAGO is based). The number of pairs

that fulfilled this strict requirement, and also appeared in the Clue-
Web09 corpus, simply was way too low.

In general, having rich constraints significantly improved preci-
sion as shown in Table 6. Without the reasoner, we obtained several
birth dates for one person and in some cases more than five advi-
sors for one person, a situation highly unlikely in reality. Without
the reasoner precision dropped to 25%. Table 4 shows a few sample
results for facts and their supporting patterns.

This experiment had longer run-times (ca. 18 hours for 2 iterati-
ons) due to the use of domain-specific constraints for the reasoner,
and also because of the larger number of seed facts obtained from
YAGO for the first iteration. The experiment again showed consi-
derable speedup obtained from parallelizing the reasoner, with 5
reasoners (on 5 nodes of our cluster) taking 7.1 hours whereas 10
reasoners only took 2.7 hours.

Relation # Precision Precision
extractions @1000

bornOnDate 40,962 92% 97%
facultyAt 4,394 96% 98%
graduatedFrom 1,371 81% n/a
hasAcademicAdvisor 46 75% n/a
hasWonPrize 4,800 91% 100%

Table 5: Extracted facts and estimated precision for academic
relations obtained from two iterations of PROSPERA.

Method # Precision Runtime (hours)
extractions

Full-PROSPERA 51,573 92% 18.3
NoReasoner 773,721 25% 13.1

Table 6: PROSPERA variants on academic relations

7.4 Discussion
The presented experiments are a proof of concept for the scalability
of our approach. Each iteration of the analysis and reasoning phases
takes only a few hours, with the Hadoop-based, parallelized PRO-
SPERA system. In particular, even in the more demanding setting
of the constraints-rich academic relations, the graph-partitioning-
based distributed reasoner is fast enough to avoid bottlenecks.

In all experimental results, precision is very high and matches
up against the high quality of the NELL results. In terms of recall,
we achieved a much larger number of extracted facts, for some re-
lations even orders-of-magnitude higher. Here the combination of
richer patterns, statistically informative weights for clauses, and the
resulting better input for the reasoner proved to be vital. As our stu-
dies with selectively disabling specific components of PROSPERA
show, all building blocks are essential and their careful integration
is key to the overall performance.

Relation PROSPERA Source pattern
facultyAt (Richard_Axel, Columbia_University) ’s group at
graduatedFrom (Albert_Einstein, University_of_Zurich) earned a doctorate from the
hasAcademicAdvisor (Miguel_Rolando_Covian, Bernardo_Houssay) student of

Table 4: Sample output from PROSPERA

Regarding the quality of the output of the knowledge-harvesting
systems, let us again emphasize that the facts by PROSPERA refer
to canonical entities, whereas NELL’s output refers to potential-
ly ambiguous non-canonical names. When considering these ap-
proaches for further extending near-human-quality knowledge ba-
ses such as DBpedia, Cyc, or YAGO, this clean entity-level out-
put is an important asset. In our experiments, the name-to-entity
mapping heuristics worked very well. When sampling the accep-
ted facts, we came across very few disambiguation errors, they had
negligible influence on the overall precision.

8. CONCLUSION
This paper has addressed the ambitious goal of automatically con-
structing large knowledge bases from Web sources. It extended
and improved prior work by projects like KnowItAll, StatSnowball,
ReadTheWeb, and YAGO-NAGA in several ways. First, we introdu-
ced a new notion of n-gram-itemset patterns and associated confi-
dence statistics. Second, we showed how to utilize this pattern stati-
stics for MaxSat-based reasoning with informative clause weights,
and we developed techniques for making the previously expen-
sive reasoning much more efficient and parallelizable. Third, we
integrated all building blocks into a Hadoop-based distributed sy-
stem architecture for scalable knowledge harvesting that can achie-
ve both high precision and much higher recall than prior methods.
In large-scale experiments, we compared ourselves against the la-
test state-of-the-art competitor and demonstrated significant gains.
Our experimental data is accessible on the Web site
www.mpi-inf.mpg.de/yago-naga/prospera/.

Our ongoing and future work includes reaching out for more de-
manding relations that are expressed in very subtle ways but have
sophisticated consistency constraints. For example, automatically
distinguishing the relations hasWonAward and nominatedForAward
is difficult (in domains like arts and sciences). In addition, we aim
to systematically extract temporal scopes for all time-dependent
facts [20, 31], for example, the timepoints of awards and the ti-
me periods for relational facts such as worksFor and marriedTo.
Finally, we plan to integrate Web-extracted facts into the YAGO
ontology, which has mainly relied on Wikipedia and WordNet, and
releasing the extended knowledge base to the research community.

Acknowledgements
We are grateful to the European Union and to Google for suppor-
ting parts of this research, through the EU project Living Knowled-
ge and a Google Research Award, respectively.

9. REFERENCES
[1] First International Workshop on Automatic Knowledge Base Construction

(AKBC), Grenoble, France, 2010. akbc.xrce.xerox.com
[2] E. Agichtein, L. Gravano. Snowball: extracting relations from large plain-text

collections. ACM DL, 2000.
[3] R. Agrawal, T. Imielinski, A.N. Swami. Mining Association Rules between

Sets of Items in Large Databases. SIGMOD, 1993.
[4] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives. DBpedia:

A nucleus for a web of open data. ISWC, 2007. www.dbpedia.org
[5] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, O. Etzioni. Open

information extraction from the web. IJCAI, 2007.
www.cs.washington.edu/research/knowitall/

[6] S. Brin. Extracting patterns and relations from the World Wide Web. WebDB,
1998.

[7] R. Bunescu, R. Mooney. Extracting relations from text: From word sequences
to dependency paths. Text Mining & Natural Language Processing, 2007.

[8] M. J. Cafarella. Extracting and querying a comprehensive web database.
CIDR, 2009.

[9] A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka Jr., T. M. Mitchell.
Coupled semi-supervised learning for information extraction. WSDM, 2010.

[10] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr.,
T. M. Mitchell. Toward an Architecture for Never-Ending Language Learning.
AAAI, 2010. rtw.ml.cmu.edu/readtheweb.html

[11] M.-W. Chang, L.-A. Ratinov, N. Rizzolo, D. Roth. Learning and inference
with constraints. AAAI, 2008.

[12] P. Cimiano, J. Völker. Text2Onto – a framework for ontology learning and
data-driven change discovery. NLDB, 2005.

[13] J. Dean, S. Ghemawat. MapReduce: a flexible data processing tool. Commun.
ACM 53(1), 2010.

[14] A. Doan, L. Gravano, R. Ramakrishnan, S. Vaithyanathan. (Eds.). Special
issue on information extraction. SIGMOD Record, 37(4), 2008.

[15] P. Domingos, D. Lowd. Markov Logic: An Interface Layer for Artificial
Intelligence. Morgan & Claypool, 2009.

[16] O. Etzioni, M. J. Cafarella, D. Downey, A.-M. Popescu, T. Shaked,
S. Soderland, D. S. Weld, A. Yates. Unsupervised named-entity extraction
from the web: An experimental study. Artif. Intell., 165(1), 2005.

[17] A. Jain, P. G. Ipeirotis, A. Doan, L. Gravano. Join optimization of information
extraction output: Quality matters! ICDE, 2009.

[18] D.R. Karger, C. Stein. A New Approach to the Minimum Cut Problem. J.
ACM 43(4), 1996.

[19] G. Karypis, V. Kumar. A Parallel Algorithm for Multilevel Graph Partitioning
and Sparse Matrix Ordering. J. Parallel Distrib. Comput. 48(1), 1998.

[20] X Ling, D.S. Weld. Temporal Information Extraction. AAAI, 2010.
[21] N. Nakashole, M. Theobald, G. Weikum. Find your Advisor: Robust

Knowledge Gathering from the Web. WebDB Workshop, 2010.
[22] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, S. Vaithyanathan. An

algebraic approach to rule-based information extraction. ICDE, 2008.
[23] M. Richardson and P. Domingos. Markov Logic Networks. Machine Learning,

2006.
[24] S. Riedel, L. Yao, A. McCallum. Modeling Relations and their Mentions

without Labeled Text. ECML, 2010.
[25] S. Sarawagi. Information extraction. Foundations and Trends in Databases,

1(3), 2008.A. Doan, J. F. Naughton, R. Ramakrishnan. Declarative information
extraction using Datalog with embedded extraction predicates. VLDB, 2007.

[26] W. Shen, A. Doan, J.F. Naughton, R. Ramakrishnan. Declarative Information
Extraction Using Datalog with Embedded Extraction Predicates. VLDB, 2007.

[27] K. Shvachko, H. Kuang, S. Radia, R. Chansler. The Hadoop Distributed File
System. MSST, 2010.

[28] R. Srikant, R. Agrawal. Mining Sequential Patterns: Generalizations and
Performance Improvements. EDBT, 1996.

[29] F. M. Suchanek, G. Kasneci, G. Weikum. YAGO: a core of semantic
knowledge. WWW, 2007. www.mpi-inf.mpg.de/yago-naga/

[30] F. M. Suchanek, M. Sozio, G. Weikum. SOFIE: a self-organizing framework
for information extraction. WWW, 2009.

[31] Y. Wang, M. Zhu, L. Qu, M. Spaniol, G. Weikum. Timely YAGO: harvesting,
querying, and visualizing temporal knowledge from Wikipedia. EDBT, 2010.

[32] G. Weikum, M. Theobald. From Information to Knowledge: Harvesting
Entities and Relationships from Web Sources. PODS, 2010.

[33] M.L. Wick, A. Culotta, K. Rohanimanesh, A. McCallum. An Entity Based
Model for Coreference Resolution. SDM, 2009.

[34] T. White. Hadoop: The Definitive Guide. O’Reilly, 2009.
[35] F. Wu, D. S. Weld. Automatically refining the Wikipedia infobox ontology.

WWW, 2008.
[36] F. Xu, H. Uszkoreit, H. Li. A seed-driven bottom-up machine learning

framework for extracting relations of various complexity. ACL. 2007.
[37] J. Zhu, Z. Nie, X. Liu, B. Zhang, J.-R. Wen. StatSnowball: a statistical

approach to extracting entity relationships. WWW, 2009.

