

Dynamic Role Allocation for Small Search Engine Clusters

Ndapandula Nakashole
Department of Computer Science

University of Cape Town
Private Bag X3, Rondebosch, 7701

nnakasho@cs.uct.ac.za

Hussein Suleman
Department of Computer Science

University of Cape Town
Private Bag X3, Rondebosch, 7701

hussein@cs.uct.ac.za

Calvin Pedzai
Department of Computer Science

University of Cape Town
Private Bag X3, Rondebosch

cpedzai@cs.uct.ac.za

ABSTRACT
Search engines facilitate efficient discovery of information in
large information environments such as the Web. As the amount
of information rapidly increases, search engines require greater
computational resources. Similarly, as the user base increases
search engines need to handle increasing numbers of user
requests. Existing solutions to these scalability problems are
often designed for large computer clusters. This paper presents a
flexible solution that is deployable also on small clusters. The
solution is based on the allocation and dynamic re-adjustment of
indexing and querying roles to cluster nodes in order to optimize
cluster utilisation. By allocating cluster machines to the job that
requires the most computational power, indexing and querying
may both realize performance gains, while neither overwhelms
the limited resources available. A prototype system was built and
tested on a small cluster using a dataset of over 100 000 Web
pages from the uct.ac.za domain. Initial results confirm an
improved system resource utilisation, which warrants further
investigation.

Categories and Subject Descriptors
C.4 [Performance of Systems]: H.3.4 [Information Storage
and Retrieval]: Systems and Software H.3.5 [Information
Storage and Retrieval]: On-line Information Services

General Terms
Design, Performance

Keywords
Indexing, querying, small search engine cluster, dynamic
allocation.

1. INTRODUCTION
Cluster computing is a popular underlying architecture for modern
production search engines, such as those employed by Google and
Yahoo!. While popular, clusters are not necessarily the best
technology for such problems, as the data inversion involved in
creating search engine indices is not easily parallelisable [5].

However, the price-performance index makes clusters an
attractive choice, given the massive quantities of information and
massive numbers of requests processed by such Web search
engines.

Assuming that a cluster is the architecture of choice, computation
must be distributed among the individual machines. Production
Web search engines may divide both the processing and data
among individual machines, with either a static assignment of
processes to processors, an on-demand task allocation or some
combination of these approaches. The static assignment approach
works well in large clusters where some nodes can be dedicated to
indexing new data while other nodes serve queries. In this case,
changing the task performed by a single computational node does
not have a major impact on the whole system.

In a smaller cluster, with possibly fewer users and possibly less
data, this is not the case. The role of a single node (indexing or
querying) may have a substantial impact on overall performance
and resource utilisation. An obvious choice may be to have all
nodes perform both indexing and querying tasks, but this may
result in problems because of the small number of nodes. Firstly,
the disk access operations of indexing and querying tasks
typically do not follow similar patterns, thus caching can be sub-
optimal if a node is interleaving indexing and querying
operations. Secondly, in a smaller cluster, one operation can
easily swamp the cluster, making it difficult for the alternative
operation to execute to completion. For example, if a large
amount of data needs to be indexed, all nodes could be heavily
loaded, and an incoming query will take much longer to process.
If some resources or nodes could be reserved for each operation,
based on the current need for indexing and querying tasks, both of
these problems may be suitably dealt with. This thus is the
premise of this paper – that nodes in a small cluster search engine
could be assigned a particular role, dynamically adjusted for
changing loads, in order to best utilise available resources while
obtaining the benefits outlined above.

The rest of this paper contains a brief discussion of core search
engine concepts, followed by the design and evaluation of the
dynamic role search engine, ending with a discussion of the
implications and how these relate to other and future efforts.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
SAICSIT 2007, 2 - 3 October 2007, Fish River Sun, Sunshine Coast, South
Africa
Copyright 2007 ACM 978-1-59593-775-9/07/0010…$5.00

2. SYSTEM DESIGN
2.1 Introduction to Search Engines
Most practical search engines are based on a common architecture
with a set of key components, namely: the Crawler, the Local
Store, the Indexer and the Query modules. This architecture is

91

used by systems such as Google [4] and FAST [16]. The
relationships among various components are shown in Figure 1.

A Crawler is a component that recursively downloads pages from
the Web by following hyperlinked URLs to create a local copy of
part of the Web.

Figure 1. Common search engine architecture

The Local Store is a snapshot of the Web at a given crawling time
for each document. These components are not necessarily present
if the search engine is not based on Web documents. The Indexer
module records which words appear in each document. For each
encountered word, the indexing system maintains a set of URLs
or identifiers that the word is relevant to, possibly along with
other positional information regarding the individual occurrences
of words. These indices must be kept in a format that allows their
fast intersection and merging during querying time [9]. Thus the
index is typically stored as inverted files. The inverted file for a
term is a list of identifiers of documents where the term appears.
The Query module accepts search queries from users and
performs searches on the indices. The query module ranks the
results before returning them to the user, such that the results near
the top are most likely to be what the user is looking for.

The algorithms for most of these components are omitted as they
are not critical to the discussion that follows, but details can be
found in [10][13]. The search engine presented in this paper is
made up of the components described above. In particular, the
Indexing and Querying subsystems are parallelized using cluster
computing, which is introduced in the next section.

2.2 System Overview
The prototype search engine used a cluster of computers to
perform the core indexing and querying operations. A cluster in
this sense is a collection of interconnected stand-alone computers
working together as a single, integrated computing resource.
Such a system can provide a cost-effective way to gain fast and
reliable services that have historically been found only on more
expensive proprietary shared memory systems [2].

The system was implemented in C++ in conjunction with the MPI
library for parallel programming. MPI is a standard for
distributed memory parallel computation using explicit message
passing. The C++ programming language was chosen over Java
because C++ has well-established parallel programming libraries.
Furthermore, C++ execution speeds are preferable for high
performance computing. Before the architecture of the search
engine is presented, the dynamic role allocation algorithm is first
discussed.

2.3 Dynamic Role Allocation
To illustrate the concept of dynamic allocation, an example that
compares dynamic allocation to static allocation is shown in
Figure 2. In the example, the parameter ‘Files’ indicates how
many documents need to be indexed and the parameter ‘Queries’
indicates how many user queries are queued and need processing.
The example shows that dynamic allocation changes the number
of cluster nodes performing indexing or querying based on the
workload. The allocation changes over time as the workloads on
the querying and indexing machines change. In this example, the
first time step has 2 machines allocated to indexing and 10
machines allocated to querying since there are no files that require
indexing and 1000 queries that need responses. However, in the
second and third time steps, the number of indexing nodes
increases while the number of querying nodes decreases due to an
increased number of files to be indexed and a decline in query
numbers. The three time steps correspond to a reallocation count
of two. The reallocation count is defined as the number of times
reallocation of indexing/querying roles takes place during a fixed
time period. The reallocation count does not apply to static
allocation as node allocation does not change unless it is done
manually.

Figure 2. Difference between dynamic and static allocation

2.4 System Architecture
Figure 3 shows the overall architecture of the prototype search
engine. The highlighted parts of the diagram collectively make
up the Indexing subsystem – the non-highlighted parts show the
Querying subsystem. The parts in dotted lines are the interfaces
between the two subsystems. The interfaces through which the
two subsystems are connected are in the form of inverted index
files and a Load Balancer that is independently utilized by each
subsystem. These interfaces are described below.

2.4.1 The Interface files
The index is made up of inverted files. The Querying subsystem
relies heavily on the index produced by the Indexing subsystem as
the former needs to access the index before it can respond to

92

queries. The id_urls.INFO file contains the ID-to-URL mappings
of all the documents that have been indexed by the system.
Identifiers (IDs) are used by the indexing system as an efficient
way to uniquely identify each indexed document, but the query
module needs to respond to user queries with actual URLs.

2.4.2 The Load Balancer
This component monitors the load averages on the nodes
allocated to indexing and querying and redistributes roles as
necessary. A node’s load average is an indication of how much
work it has been doing in terms of jobs in the run queue or
waiting for disk I/O, averaged over a certain period of time. The
UNIX virtual file /proc/loadavg was used to obtain the load
averages on individual nodes. The /proc/loadavg file includes
load average figures giving the number of jobs in the run queue or
waiting for disk I/O, averaged over 1, 5 and 15 minutes
respectively. The load balancer periodically polls nodes for this
information and updates the list of nodes allocated to indexing
and querying respectively. For simplicity, this list is stored as the
number of machines allocated to indexing – all nodes with a
higher node number are assumed to be allocated to querying.

Figure 3. High level architecture of the dynamic role search

engine

2.5 The Indexing Subsystem
In order to make the system easy to extend, the indexing
subsystem was separated into six main components, namely: the
Crawler, the Parser, the Stemmer, the Indexer, the index Updater
and the Dispatcher. Parallel indexing was achieved by
distributing these components on the cluster as shown on Figure
4. A master-slave approach was used to achieve parallel
indexing. The idea behind this approach is that one process, the
master, is responsible for coordinating the work of others, the
workers. This mechanism is particularly useful when there is
little or no communication among the slave processes and when
the amount of work that each slave has to perform is difficult to
predict [8]. Both of the above cases apply to the task of indexing.
.

The Crawler and Dispatcher components are executed by the
machine with the smallest internal identifier within the cluster,
which henceforth assumes the role of the master node. The
documents are stored on the local disk of the master node. The

Indexer and Updater are executed by all machines allocated to
indexing at a particular point in time. These machines are the
worker nodes. All worker nodes create indices on their local
disks which are merged by the Dispatcher to create the main
index. The Indexer and Updater components parse and index the
HTML documents that are made available by the crawler. The
Indexer module creates an index from scratch whereas the
Updater module updates an existing index based on newly
available data since the last time indexing was performed.
Extremely common words (stop-words such as “the” and “is”) are
excluded from indexing and all terms are case-folded to lower
case. In addition, all terms are converted to canonical root forms
using Porter’s stemming algorithm [15]. The indexing subsystem
employs an existing open-source crawler, GNU Wget, a non-
interactive command line tool for retrieving files using HTTP,
HTTPS and FTP [7].

2.6 The Querying Subsystem
The querying subsystem receives queries from users as a string of
keywords that represent the information needs of a user. These
queries are fed through the user interface to the querying
dispatcher for processing. Once they reach the dispatcher, the
dispatcher has to decide which machine in the cluster will handle
the query. The allocation of machines to querying by the load
balancer is consulted for this purpose.

When a cluster machine is chosen to respond to a query, the query
is sent off to the machine and the necessary index files are copied
over, if necessary. Each query is stemmed and stopped to
improve on accuracy. Term occurrence weights for each
document from the index files are used to compute the similarity
of the document to the request. Once the computation and results
are done, a ranked list of documents is sent back to the dispatcher
to return to the user.

93

Figure 4. Distribution of the indexing subsystem components

on the cluster

3. PRELIMINARY RESULTS
3.1 Experimental Design
Tests were conducted to assess the performance and cluster
utilisation of the search engine system. A core aim of the
evaluation was to verify that dynamic role allocation results in
better cluster utilisation, as the main aim of this project is to
improve use of resources in small clusters.

The experiments were conducted on a cluster of 13 Gentoo Linux
PCs interconnected by a Gigabit Ethernet network. Of the 13
machines, 12 of the nodes could assume the roles of indexing or
querying – the remaining machine was used as the master node.
Each PC was equipped with a 3 GHz Pentium 4 processor, 512
MB of RAM and 80 GB disk storage. The MPI implementation
on the cluster was LAM MPI version 7.0.6.

3.2 Results
The system was tested to establish how dynamic role allocation
affects the utilization of the cluster. Utilization is a measure of
how well the load is distributed within the cluster, and may be
defined as follows:

where n is the total number of worker nodes in the cluster, li is the

load on node i, and l is the average workload on all the nodes n.
Thus, if all workloads are equal, U will be equal to 1, but U will
have lower values as workloads deviate further from the average
l. The workload li refers to the per-node workload obtained from
the /proc/loadavg file. The load average figure refers to the
number of jobs in the run queue or waiting for disk I/O, averaged
over a fixed interval of time.

Figure 5 shows the cluster utilization for indexing operations with
increasing datasets. The utilisation is close to 1 independent of
dataset size. During indexing of different datasets, a random
number of queries were fed to the cluster. The number of queries
was varied between 0 and 2824. Each query is handled by a
single node in parallel with other nodes which process other
queries.

Tests were then carried out to determine how this reasonably
balanced utilization affects performance of the indexing and
querying subsystems. The indexing subsystem was tested for the
effect of the two (static and dynamic) role allocation schemes on
the indexing time. Figure 6 shows the results for this test. In this
test, dynamic allocation was performed multiple times with
different reallocation counts. There are 6 nodes that performed
indexing in the static allocation case seen in Figure 6. The
number 6 was chosen to assume indexing and querying have
equal priority, thus splitting the 12 worker nodes equally between
the two roles. The query load was held constant for this test
scenario.

Cluster Utilization

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20000 40000 60000 80000 100000 120000 140000

Total Workload (Number of files)

Ba
la

nc
e

of
 U

til
iz

at
io

n

Figure 5. Cluster utilization for different sizes of document

collection

94

Performance of static and dynamic allocation with different
reallocation intervals

0

100

200

300

400

500

0 50000 100000 150000

Data size (Number of files)

Ti
m

e
to

 in
de

x(
se

co
nd

s)

static
3 reallocs
6 reallocs
9 reallocs
12 reallocs

Figure 6. Indexing performance for static and dynamic

allocation
From Figure 6 it can be seen that for small data sizes, the time
taken to index data for dynamic and static allocations is almost
the same. Different reallocation counts result in some
performance variance, in particular the smallest number of
reallocations (3) resulted in performance similar to the static case.
6 reallocations provided the best performance in this particular
test. Comparing the static allocation case with the best case of
dynamic allocation (i.e., 6 reallocations), it can be seen that for
small data sizes, the time taken to index data for dynamic and
static role allocation is almost the same. However, as the size of
the data increases, the static allocation performance is
significantly worse than that of dynamic allocation. Therefore,
with an optimal number and distribution of reallocations, dynamic
role allocation can realize shorter indexing times than static
allocation, as expected.

The querying subsystem was tested for the effect of dynamic role
allocation on query throughput – the total time it takes to respond
to a number of queries. Queries of varying lengths were
generated randomly by a separate program and written to a file.
The querying module then obtained a specified number of queries
from this file. Each node executed its own query in parallel with
the other nodes. Figure 7 shows the results with 2894 queries
where the number of nodes handling querying was dynamically
assigned to 4, 7, 9 and finally 10 nodes based on the workload.
This decreasing service time confirms that dynamic role
allocation can bring into service additional nodes as needed to
improve the performance of query processing. It important to note
that in this test scenario query response times are affected by the
cost of disk access since queries are obtained from disk. In a
situation where queries come from the network, which is often the
case in practice, response times are likely to be faster since
network access is often faster than disk access.

In summary, these experiments have provided some initial
evidence that dynamic role allocation can result in scalable
system performance and balanced resource utilization, while
maintaining the core advantages of such a system as outlined
earlier.

Effect of Reallocation on the handling of 2824
queries

0

20

40

60

80

100

120

4 7 9 10

Number of worker nodes

S
ec

on
ds

Figure 7. Effect of dynamic allocation on query throughput

4. RELATED WORK
Clusters of low cost workstations are exploited by many large-
scale Web search engines such as Google, Inktomi and FAST [6].
The architectures of these search engines require high
performance, high scalability, high availability and fault
tolerance. It is a challenging task to develop a cluster that meets
these requirements. The difficulty is that most developments
were done in competitive companies that do not publish technical
details, thus very few papers discuss Web search engine
architecture.

Orlando et al. [12] describe the design of their cluster-based
search engine called My Own Search Engine (MOSE). Their aim
is to increase query throughput by implementing an efficient
parallelization strategy. MOSE uses a combination data and task
parallel algorithm. The task parallel part is responsible for load
balancing. It does so by scheduling the queries among a set of
identical workers, each implementing a sequential Web search
engine. The data parallel part partitions the database, allowing
each query to be processed in parallel by several data parallel
tasks, each accessing a distinct partition of the database.

Lifantsev and Chiueh [9] describe Yuntis, a working search
engine prototype. One of the goals of Yuntis is to utilize clusters
of workstations to improve scalability. A Yuntis node runs one
database worker process that is responsible for data management
of all data assigned to that node. When needed, each node can
also perform crawler tasks. Yuntis differs from our system in that
the query nodes remain dedicated to responding to user queries.
There is no dynamic allocation of nodes to the roles of querying
and indexing. If the system is experiencing massive incoming
data that needs to be indexed and there are no incoming queries,
query nodes will be idle while the indexing nodes will be
overloaded. In this case, the cluster will be under-utilized.

The Google search engine architecture [3][4][6] combines more
than 15,000 commodity-class PCs with fault-tolerant software.
Each of the PCs has 256MB to 1GB of RAM, two 22GB or 40GB
disks and runs the Linux operating system. The nodes (PCs) are
connected with 100Mbit Ethernet to a gigabit Ethernet backbone
[3]. The architecture permits different queries to run on different
processors. The index is partitioned into individual segments,
thus queries are routed to the appropriate server based on which
segment is likely to hold the answer. Our system is different in
that it takes into account constrained-resource environments of

95

small or/and multi-use clusters as opposed to large task–specific
clusters inherent in the Google architecture.

The Inktomi search engine architecture serves many Web portals
such as Yahoo, HotBot, Microsoft and others. It is a cluster-based
architecture utilising RAID arrays with special focus on high
availability, scalability and cost-effectiveness. The index is
distributed and queries are dynamically partitioned across
multiple clusters. Each segment of the database handles a certain
set of sub-queries. Queries arrive at the manager where they are
directed to selected workers. Each worker sends the queries to all
workers that are tightly coupled with it through Myrinet [6].

AltaVista, Lycos and Excite make use of large Symmetric Multi-
Processor (SMP) supercomputers. The use of large SMP
machines allows fast access to a large memory space. The
database is stored and processed on one machine. Processors
handle queries independently on the shared database. The
disadvantage of such systems is mostly the high cost, that makes
them infeasible for smaller organisations.

5. CONCLUSIONS AND FUTURE WORK
Search engines are usually designed for very specific scenarios –
Web search engines in particular deal with large numbers of
requests and large quantities of data. The architectures of these
systems do not always scale down and it is not usually possible to
run a flexible search engine in an environment where resources
are limited and maximum utilisation is a key concern, such as at
institutions in developing countries.

This paper has presented a possible resource utilisation
maximisation approach that retains scalability, and is aimed at
smaller operations where changes in the actual resources can have
a substantial impact on system performance. The initial
experimental results indicate that resources are being utilised
effectively and that there is some degree of scalability in both the
indexing and querying operations, while in all experiments some
resources are always dedicated to handling incoming tasks. More
experiments are needed to further verify the initial results and to
prove that this approach works well with differing workloads and
scales as nodes are added to or removed from the system.

In general, systems for handling large quantities of data must
work at all scales of systems, not just for large numbers of nodes,
and not restricted to only search or information retrieval
operations. This ultimately supports a de-centralisation of search
operations and other services and will empower users in all
countries to provide interesting services with limited, but well-
utilised, computing resources. At the very least, everyone can and
should have their own little Google-like system based at their
organisation, so searching in an internal organisation does not
have to be effected through an external service provider as is
currently the norm.

6. REFERENCES
[1] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke and S.

Raghavan. Searching the Web. ACM Transactions on
Internet Technology, 1(1): 2-43, 2001.

[2] M. Baker and R. Buyya. Cluster computing at a glance. In
Rajkumar Buyya, editor, High Performance Cluster

Computing, volume 1, Architectures and Systems, Chapter
1. pp. 3-47. Prentice Hall, 1999.

[3] L.A. Barroso, J. Dean, and U. Holzle. Web search for a
planet: The Google cluster architecture. Micro, IEEE,
23(2):22-28, 2003.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems, 30(1-7):107-117, 1998.

[5] F. Cacheda, V. Plachouras and I. Ounis. A case study of
distributed information retrieval architectures to index one
terabyte of text. Information Processing and Management,
41(5): 1141-1161, 2005.

[6] B. Choi and R. Dhawan. Distributed Object Space Cluster
Architecture for Search Engines. High Availability and
Performance Workshop. 2003.

[7] Free Software Foundation, Inc. GNU Wget. Available at:
http://www.gnu.org/software/wget/. 2006.

[8] W. Gropp, E. Lusk and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MIT Press, 1994.

[9] M. Lifantsev and T. Chiueh. Implementation of a Modern
Web Search Engine Cluster. In Proceedings of USENIX
Annual Technical Conference, pp. 1-14, 2003.

[10] N. Nakashole. A Dynamic Query/Index Role Search
Engine. Honours Project Report, Department of Computer
Science, University of Cape Town.

[11] A. Ntoulas and J. Cho. What’s New on the Web? The
Evolution of the Web from a Search Engine Perspective. In
Proceedings of the 13th International Conference on World
Wide Web, pp.1-12, 2004.

[12] S. Orlando, R. Perego and F. Silvestri. Design of Parallel
and Distributed Web Search Engine. In Proceedings of the
2001 Parallel Computing Conference, 97-204, 2001.

[13] C. Pedzai.. A Dynamic Query/Index Role Search Engine.
Honours Project Report, Department of Computer Science,
University of Cape Town. 2006.

[14] G.F. Pfister. In search for clusters: The ongoing battle in
lowly parallel computing. Prentice Hall 1998.

[15] M. Porter. The Porter Stemming Algorithm: Available at:
http://www.tartarus.org/martin/PorterStemmer/ . 2006.

[16] K.M. Risvik and R. Michelsen. Search Engines and Web
Dynamics. Computer Networks, 9(3): 289-302, 2002.

[17] C.S. Yeo, R. Buyya, H. Pourreza, R. Eskicioglu, P. Graham
and F. Sommers. Cluster Computing: High-Performance,
High-Availability, and High-Throughput Processing on a
Network of Computers. In A. Y. Zomaya, editor, Handbook
of Nature-Inspired and Innovative Computing: Integrating
Classical Models with Emerging Technologies, chapter 16,
pp 521-551. 2006.

96

http://liinwww.ira.uka.de/csbib?query=%2Bau:PlachourasV*+%2Bau:Plachouras&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:OunisI*+%2Bau:Ounis&maxnum=200&sort=year

	1. INTRODUCTION
	2. SYSTEM DESIGN
	2.1 Introduction to Search Engines
	2.2 System Overview
	2.3 Dynamic Role Allocation
	2.4 System Architecture
	2.4.1 The Interface files
	2.4.2 The Load Balancer

	2.5 The Indexing Subsystem
	2.6 The Querying Subsystem

	3. PRELIMINARY RESULTS
	3.1 Experimental Design
	3.2 Results

	4. RELATED WORK
	5. CONCLUSIONS AND FUTURE WORK
	6. REFERENCES

