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ABSTRACT
We present a robust method for gathering relational facts from the
Web, based on matching generalized patterns which are automati-
cally learned from seed facts for relations of interest. Our approach
combines these generalized patterns for high recall information ex-
traction with a rule-based, declarative reasoning approach to also
ensure high precision. Newly extracted candidate facts are assigned
statistical weights which reflect the strengths of the patterns used to
extract them. For checking the plausibility of candidate facts with
respect to existing knowledge and competing hypotheses, we use an
efficient algorithm for weighted Max-Sat over propositional-logic
clauses. In contrast to prior work on reasoning-based information
extraction, we employ richer statistics and smart pruning to bound
the number of grounded rules passed on to the Max-Sat solver.

1. INTRODUCTION

1.1 Motivation
Knowledge-sharing communities like Wikipedia and recent ad-

vances on scalable information extraction have opened up oppor-
tunities for large-scale knowledge harvesting: automatically con-
structing comprehensive knowledge bases of entity-relationship-
structured facts. Notable endeavors along these lines of a “Seman-
tic Wikipedia” and a “machine-readable Web” include academic
projects such as DBpedia [3], YAGO [21], Text2Onto [9], sindi-
ce/sig.ma [23], KnowItAll/TextRunner [13], IntelligenceInWikipe-
dia [25], ReadTheWeb [6], Omnivore [5], StatSnowball [28], or
DBLife [11], and also commercial endeavors like freebase.com,
trueknowledge.com, wolframalpha.com, www.google.com/squared,
or entitycube.research.microsoft.com. Such knowledge bases con-
sist of relational facts about millions of named entities, their se-
mantic types, and their relationships. They provide great assets for
semantic search on the Web and in enterprises, entity reconciliati-
on, knowledge-based reasoning, and other applications.

Knowledge harvesting typically works by pattern matching, sta-
tistical learning, or logical reasoning [12, 18] for entities and relati-
onships embedded in semistructured Web pages such as Wikipedia
infoboxes or natural-language texts such as Wikipedia articles, on-
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line news, biographies or homepages of researchers, and so on. As
with many learning tasks, hand-labeled training data for supervi-
sed learning of information extraction is typically a key bottlen-
eck. Therefore, a family of almost-unsupervised methods has be-
come the prevalent approach: fact harvesting starts with a small set
of seed facts for one or more relations of interest, then automati-
cally finds markup, textual, or linguistic patterns in the underly-
ing sources as indicators of facts, and finally uses these patterns to
identify new fact candidates as further hypotheses to populate the
relations in the knowledge base.

For example, to collect facts about the Alma Mater and doctoral
advisors of researchers, one could start with seeds such as gradua-
tedFrom(Jim Gray, UC Berkeley), graduatedFrom(Hector Garcia-
Molina, Stanford), hasAcademicAdvisor(Jim Gray, Mike Harrison),
and hasAcademicAdvisor(Hector Garcia-Molina, Gio Wiederhold).
We could then find text patterns such as “x graduated at u”, “x and
his advisor y”, and “professor y and his student x” (with placehol-
ders x, u, y for the involved named entities), which in turn could
lead to discovering the new facts such as graduatedFrom(Susan
Davidson, Princeton) and hasAcademicAdvisor(Susan Davidson,
Hector Garcia-Molina).

This fact-pattern duality can be harnessed in an iterative manner,
with statistical assessment of the indicative strengths of patterns
and the confidence in fact candidates. Moreover, additional plau-
sability tests can be employed based on logical consistency cons-
traints, to reduce the false-positive rate. For example, if researcher
x gradudated from university u under the supervision of y, then y
would have to be a professor or lecturer with a position at or other
connections to u.

1.2 Problem
The outlined methods for information extraction and seed-based

knowledge harvesting face a three-way trade-off regarding the di-
mensions of precision, recall, and efficiency. Simple pattern-based
extraction can achieve high recall (i.e., high fraction of potentially
collectible facts) but typically has low or mediocre precision (i.e.,
low fraction of correct facts). This is because of false positives re-
sulting from noisy or ambiguous patterns such as “x and his co-
author y” which can easily be picked up from seed facts but dilutes
the subsequent candidate gathering. Conservative pruning based on
statistical confidence measures, on the other hand, would strengt-
hen precision only at the cost of substantially lowering recall. To in-
crease recall, one could consider patterns with ellipses (wild-cards
for included substrings), but this can lead to misleading patterns
by included appositions or relative clauses - an example is “y, a
great mentor and advisor of many students, and her co-author x”.
Identifying this situation requires deep parsing of natural-language
sentences, using a lexical dependency parser. This in turn is com-
putationally expensive and would prohibit high-throughput harve-



sting.
Recently, a family of constraints-based methods have been de-

veloped, for complementing the statistical evidence from patterns
with reasoning on the consistency of fact candidates. These me-
thods include relational learning with Markov Logic Networks [17],
log-linear learning models with constraints [8], and our own work
on the SOFIE [22] tool which casts reasoning about extraction hy-
potheses into a weighted Max-Sat problem. These methods have
the potential to improve precision without neglecting recall, but all
of them still tend to favor precision over recall and all of them have
high computational costs.

The problem thus is to devise new methods that reconcile high
precision, good recall, and affordable computational costs, with the
final goal of scalable and robust knowledge harvesting. The ap-
proach explored in this paper is to intelligently combine and extend
several building blocks from the methodological repertoire outlined
above.

1.3 Contribution
In this paper, we develop a robust approach to knowledge har-

vesting that combines extensions of high-recall, pattern-driven ex-
tractors with high-precision consistency reasoning in an innovative
way. Our approach extends prior work in the SOFIE [22] informati-
on extraction framework into two important directions: 1) generali-
zed patterns and 2) statistical weights assigned to the patterns used
for fact extraction. Thus, for high recall, we propose a new kind
of patterns that consist of sets of variable-length n-grams, with an
optional lifting to part-of-speech tags. For high precision, we com-
pute extended statistics for the confidence in these patterns, and
construct a set of weighted clauses for Max-Sat-based logical rea-
soning about the mutual consistency of fact candidates. Our expe-
rimental studies demonstrate major improvements on our previous
work on the SOFIE tool.

2. PATTERN GATHERING AND ANALYSIS
In the first phase of our three-phase architecture, we gather all

the patterns that we can find in text. The rationale of this phase is
recall-oriented: strive to retain almost all useful patterns.

We are given a set of binary relations R1, . . . , Rm of interest,
each with a type signature, and we assume that we have an existing
knowledge base with typed entities. We assume that this knowledge
base more or less includes all individual entities as well as informa-
tion about their types (e.g., scientist or more generally person). For
many other domains, explicit dictionaries are available, for exam-
ple, imdb.com for movies, librarything.com for books, MeSH (Me-
dical Subject Headings or the YAGO [21] knowledge base when
dealing with Wikipedia entities. This provides us with a fairly com-
plete dictionary of the possible meanings of a surface string. These
possible meanings are captured by a special means relation, which
explicitly maps the different surface strings onto individual entities.
As in the original SOFIE approach [22], disambiguation of surface
strings onto entity names can be done at reasoning time.

We then consider a textual corpus, e.g., a set of Wikipedia ar-
ticles, Web pages, or news articles, as input for pattern analysis.
The corpus is pre-processed to produce meaningful units, e.g., sen-
tences or passages which are represented as sequences of tokens.
Finding new patterns is then based on first detecting entities or enti-
ty candidates within these different parts of speech of the sentence.
Every sentence with two or more entities (each occurring in a diffe-
rent noun phrase) serves as source for a potential pattern. Initially,
any subsequence between two such entities is considered as a basic
pattern candidate.

2.1 Seed Patterns
The basic patterns from the pattern gathering phase are fed into

a frequent n-gram-itemset mining algorithm for identifying strong
patterns. To motivate this approach, consider the following sen-
tences with two different formulations for the alma mater relation:
1: Jennifer Widom received her Bachelors degree from the In-
diana University School of Music and her Computer Science Ph.D.
from Cornell University.
2: Jeff Ullman received his Ph.D. degree in Electrical Engi-
neering from Princeton.

The sentences show the relevant entities in typewriter font and
interesting candidates for patterns in italics. Intuitively, the two
sentences have very similar structure, so that it seems feasible to
identify a common pattern. However, the common pattern is not
easily recognizable by a computer. The basic patterns - substrings
between the two entities of the sentences - differ widely.

However, the basic patterns exhibit common sub-patterns such
as “received . . . Ph.D. . . . degree . . . from”. Our approach is to dis-
cover these sub-patterns. But as each of those is merely a short se-
quence of 2 or 3 words, it would not generalize well towards newly
seen sentences which may or may not contain proper facts for the
graduatedFrom relation. For example, we would be confused by a
sentence such as “Jeff Ullman received the best paper award for
the work he did with his Ph.D. students at Stanford”. To overco-
me this problem, we use frequent n-gram itemsets as patterns, that
is a set of co-occurring n-grams, for example {received his, Ph.D.,
from}. This is a powerful means for reducing false positives while
retaining high recall.

There is still natural variety regarding pronouns or injected ad-
jectives that could prevent us from identifying good patterns. For
example, because of the variations “received his” and “received
her”, we may dismiss good n-grams as too infrequent. We address
this issue also by POS tagging, thus assigning word categories –
nouns, verbs, prepositions, etc. – to the words in a sentence. We
consider specific categories like pronouns, prepositions, and to ad-
jectives as generalizations of the actual occurring words. By re-
placing the words with their POS tags, we obtain a more gene-
ral form of n-gram pattern that we refer to as lifted pattern. These
POS-lifted n-grams are considered in addition to the words-only n-
grams, and our notion of n-gram-itemset patterns can freely combi-
ne both kinds, as determined by occurrence frequencies. To genera-
te the n-gram-itemset patterns, we apply the technique of frequent
itemset mining [2] which has been widely used to discover intere-
sting relations among items in databases. While frequent itemset
mining has been used for generalizing patterns in various domains,
our approach is the first to augment the generated patterns with a
logical reasoning component for ensuring high precision.

DEFINITION 1 (SEED EXAMPLES, COUNTEREXAMPLES).
A seed example (e1, e2) ∈ Ri is an instance of the relation Ri with
e1, e2 denoting uniquely identified entities. It is asserted that a seed
example is indeed a valid fact. A counterexample (e3, e4) /∈ Ri is
an entity pair for which it is asserted that the pair is not an instance
of Ri. For relation Ri, we denote the set of seed examples and
counterexamples by SX(Ri) and CX(Ri), respectively.

DEFINITION 2 (LIFTED & N-GRAM-ITEMSET PATTERNS).
Given a set SX(Ri) of seed examples for a relation Ri and an
input set S ⊆ Σ∗ of sequences over tokens from the alphabet Σ,
a basic pattern p ∈ Σ∗ is a sequence such that e1 p e2 occurs in
S for at least one pair (e1, e2) ∈ SX(Ri). A lifted pattern is a
pattern p where some tokens in p (with POS tags in a specified set
T of tags) are replaced by those tags. An n-gram itemset pattern



Pattern Relation Computed confidence
{PhD dissertation at} graduatedFrom 1.0
{doctorate at the, in, with} graduatedFrom 0.57
{doctorate at the, in, with} hasAcademicAdvisor 0.43
{attended the} graduatedFrom 0.96
{dissertation supervised by} hasAcademicAdvisor 1.0
{academic career at the } facultyAt 1.0
{was awarded the, along with} hasCollaborator 0.44
{and associate} hasCollaborator 1.0
{is a fellow of} hasProfessionalAffiliation 1.0
{is a member of the } hasProfessionalAffiliation 0.33

Table 1: Example seed patterns with computed confidence values

is a set Q ⊆ (Σ ∪ T )∗ for which there is at least one sequence
s ∈ S that can be written as s = h e1 p e2 t with a seed example
(e1, e2) ∈ SX(Ri) and h, p, t ∈ Σ∗, such that for all q ∈ Q the
length of q is at most n tokens and q is a subsequence of p.

Note that the occurrence of a pattern with a seed example for Ri

does not yet mean that the corresponding sentence actually states
anything about the relation Ri; the co-occurrence could be mere
coincidence. To assess the goodness of a pattern, in particular, the
significance of n-gram-itemset patterns, we gather frequency stati-
stics about co-occurrence with seed examples and counterexamp-
les.

DEFINITION 3 (SUPPORT, CONFIDENCE). For sets SX(Ri)
and CX(Ri) of seed examples and counterexamples and an input
set S ⊆ Σ∗, a basic (or lifted) pattern q has

support(q) =

|{s ∈ S|∃(e1, e2) ∈ SX(Ri) : q, e1, e2 occur in s}|
|S|

and

confidence(q) =

|{s ∈ S|∃(e1, e2) ∈ SX(Ri) : q, e1, e2 occur in s}|
|{s ∈ S|∃(e1, e2) ∈ SX(Ri) ∪ CX(Ri) : q, e1, e2 occur in s}|

Pattern analysis computes n-gram-itemset patterns with support and
confidence values.

DEFINITION 4 (SEED PATTERN, SEED-PATTERN WEIGHT).
An n-gram-itemset pattern q, for given SX(Ri), CX(Ri), and

input set S ⊆ Σ∗, is called a seed pattern if both support(q) and
confidence(q) are above the specified thresholds. Pattern q is as-
sociated with a seed-pattern weight, set to:

weight(q) = support(q)× confidence(q).

The weight of a pattern q can be interpreted as the probability that
we encounter q in a newly seen sentence (support factor) and that it
is indeed good evidence for a fact in Ri (confidence factor). Table
1 depicts some example patterns we have learned along with their
computed confidence values, for a few selected relation types.

2.2 New Patterns and Fact Candidates
Seed patterns are used to discover fact candidates as well as new

patterns (which in turn can be applied to gather additional evidence
for fact candidates and/or discover even more patterns). We consi-
der all sequences s ∈ S that contain two entities (x, y) of appro-
priate types for Ri (e.g., person names for the hasAcademicAdvisor
relation) and whose subsequence p in s = h x p y t in between

the two entities x, y approximately matches one of the seed pat-
terns. We do not insist on exact matching of a seed pattern q, as this
would require presence of all n-grams of q in p. With the limitation
of bootstrapping the entire extraction process by a few seed examp-
les, such exact matching would be overly restrictive. This way, we
can also discover new n-grams of interest, if they co-occur in a new
pattern together with n-grams known from seed patterns.

The approximate matching of p against all seed patterns q is ef-
ficiently implemented by lookups in an n-gram index constructed
from the seed patterns. This gives us also an efficient way of com-
puting a matching score by the similarity between p and q.

DEFINITION 5 (PATTERN-MATCHING SIMILARITY).
A new pattern p in input sequence s = h x p y t has similarity

sim(p, q) with seed pattern q, based on their Jaccard coefficient:

sim(p, q) = Jaccard(p, q)

=
|{n-grams ∈ p} ∩ {n-grams ∈ q}|
|n-grams ∈ p} ∪ n-grams ∈ q}|

We process all input sequences s = h x p y t this way, and again
perform frequent-itemset mining to concentrate on the set of new
patterns to those with support above a specified threshold (which
does not need to be the same threshold as in the previous mining
step for seed patterns only). Note that we cannot use confidence for
thresholding here, because these patterns co-occur with fact candi-
dates whose validity we do not know yet. The output of this step is a
multi-set of weighted triples (x, y, p)[w] where (x, y) is a fact can-
didate, p is an n-gram-itemset pattern, and w is the highest pattern-
matching similarity of p with any seed pattern q. (Note that it is a
multi-set rather than a set because the very same candidate could
be seen in different sources.)

DEFINITION 6 (CANDIDATE MULTI-SET). For given input set
S and seed-pattern set Q, the fact-pattern candidate multi-set C(S, P )
is:

C(S, P ) = {(x, y, p)[w] | ∃s ∈ S : s contains x, y, p ∧
w = max{sim(p, q)×
weight(q)|q ∈ Q}}

This candidate multi-set C is now grouped in two different ways:

1. by fact candidates (x, y), with an aggregated weight

weight(x, y) =
∑

{w|(x, y, p)[w] ∈ C}

2. by new n-gram-itemset patterns p, with an aggregated weight

weight(p) =
∑

{w|(x, y, p)[w] ∈ C}



We can interpret these weights as the aggregated evidence that
(x, y) is a valid fact and p is a good pattern for further extracti-
on steps for Ri. It is important to note that the two weights are
different, as the aggregations are computed over different sets. Fur-
ther note that the summations include also newly found patterns,
not just seed patterns. Summations are over multi-sets, so that mul-
tiple occurrences of the same candidates in different sources are
rewarded. The resulting weights are not normalized; they may be
viewed as the expected number of good facts from a given pattern
and expected number of good pattern occurrences for a given fact,
respectively.

3. REASONING FRAMEWORK
The logical reasoning phase serves to ensure mutual consisten-

cy of facts that are ultimately accepted as more likely to be true
among the fact candidates. We apply SOFIE’s basic reasoning mo-
del, which makes use of propositional first-order logic formulas,
referred to as rules. These rules represent semantic knowledge that
needs to be upheld to ensure the correctness of extracted facts.

SOFIE introduced a number of general rules that can be app-
lied across relations and domains. One of the rules that relate text
patterns to fact candidates states that, for a target relation Ri, if a
pattern p occurs with an entity pair (x, y), then x and y stand in the
Ri relation. The rule can be stated as follows:

R1: occurs(p, x, y) ∧ expresses(p, Ri)
⇒ Ri(x, y)

For example, if the relation hasAcademicAdvisor has a seed pat-
tern “studied under” and we encounter a sequence “Barbara Liskov
studied under John McCarthy” then a new candidate fact hasAca-
demicAdvisor(Barbara Liskov, John McCarthy) is generated.

A similar rule states that, if it is known that an entity pair (x, y)
stands in the relation Ri and we encounter a pattern p with (x, y),
then p expresses the relation and can be written as follows:

R2: Ri(x, y) ∧ occurs(p, x, y)
⇒ expresses(p, Ri)

First-order rules are grounded by replacing the placeholders with
entity names, which results in weighted clauses in conjunctive nor-
mal form (CNF). The task of the logical reasoner is thus to assign
truth values to fact candidates with the objective of maximizing
the sum of weights among rules that are satisfied. Thus the entire
problem can be cast as a weighted maximum satisfiability problem
(Max-Sat) (see [22] for a complete list of rules used in SOFIE,
including entity disambiguation and functional properties of relati-
ons).

3.1 Statistically Weighted Clauses
Our approach extends the original SOFIE reasoning framework

in an important direction: introducing a more informed weighting
scheme for the clauses which serve as input to the weighted Max-
Sat solver.

SOFIE already statically assigned weights to clauses generated
from rules. However, not all candidate facts are equally important.
Candidate facts may have been extracted from different patterns
which do not have the same strength, and thus their weights should
also include occurrence statistics.

The desired impact of weights can be seen from two main per-
spectives in this setting. First, in the case of functional relations
where only one of a pair of candidate facts can be true, the one
that has better evidence will have higher weight, thus guiding the

Max-Sat solver to the correct solution. Second, and more general-
ly, the weighted Max-Sat problem is NP-hard, and it is typically
solved using approximation algorithms. The solutions delivered by
approximation algorithms are not necessarily optimal and may in-
clude some randomization. Thus high weights serve an important
role in guiding the solver into the correct direction. Consequently,
an approach relying on fixed weights lacks important information
represented by weights derived from evidence in the data.

We compute the weights of clauses generated by grounding the
rules on the candidate multi-set C = {(x, y, p)[w]}, using the
aggregated weights w(x, y) and w(p) constructed in the pattern-
analysis phase. Thus, for rules R1 and R2, we generate clauses
with their weights set as follows:

Rule R1:
∑
{w|(α, β, π)[w] ∈ C

α = x, β = y, π = p} × w(p).

Rule R2:
∑
{w|(α, β, π)[w] ∈ C

α = x, β = y, π = p} × w(x, y).

4. EXPERIMENTAL RESULTS
We carried out experiments to extract academia-related informa-

tion. The corpus was generated by crawling the homepages of the
most prolific authors from DBLP, then augmenting these with artic-
les of scientists from Wikipedia. Additionally, names of scientists
were used to query Google for further documents. The resulting
corpus consists of 87,470 documents. The knowledge base used in
the experiments is the YAGO [21] ontology.

To quantify how the various aspects of our approach, which we
refer to as PROSPERA, affect performance, we evaluated the ha-
sAvademicAdvisor relation, Table 2 shows the results.

PROSPERA has the highest recall at high precision. SOFIE pro-
duced many extractions but with low precision. The hasAcademi-
cAdvisor relation is not straightforward to extract because it can
be expressed by patterns that may be misleading, for example the
pattern, “x worked with y” may or may not indicate that y was the
doctoral advisor of x. These misled SOFIE but the robustness of
PROSPERA withstood them as it identifies these cases through
pattern occurrence statistics. The two systems extracted more or
less the same facts, however each system also extracted some tup-
les the other did not. For example both systems extracted the pair
(Jeffrey Shallit, Manuel Blum), but only PROSPERA extracted the
pair (Serge Lang, Emil Artin), whereas only SOFIE extracted the
pair (Ravi Sethi, Jeffrey Ullman).

Consistency checking plays a significant role in ensuring high
precision as reflected in the results of the PROSPERA-NoReasoner
method. The reasoner thus acts as a well-placed filter, performing
type checking as well as ensuring that the logical rules are upheld.
The PROSPERA-NoCounterExamples method shows the impact
of counter-examples. Without the counter-examples, even weak pat-
terns may lead to extractions, as can be seen, this degrades precision
slightly. The PROSPERA-Unweighted method shows the impact
of the weights. Disregarding pattern weights all together results in
slightly reduced recall, this is attributed to the fact that the weights
guide the reasoner to the correct answer, and without them there
may be misleading cases, causing the reasoner to reject facts that
might be true.

The number of fact candidates reflect the number of candidates
passed on to the reasoner. It can be seen in Table 2 that all variations
of PROSPERA provide considerable pruning of fact candidates and



Method # extractions Precision # fact candidates Runtime (min)
SOFIE 1,845 22% 105,016 122
PROSPERA 372 83% 22,340 35
PROSPERA-NoReasoner 22,340 1.9% n/a 22
PROSPERA-NoCounterExamples 404 79% 24,328 35
PROSPERA-Unweighted 338 83% 24,328 35

Table 2: Performance for the hasAcademicAdvisor relation

this results in shorter execution times compared to SOFIE. Compa-
risons were also carried out using various other relations, the results
are shown in Table 3.

Relation # Precision
extractions

hasAcademicAdvisor 372 83%
hasCollaborator 122 91%
facultyAt 1,274 94%

PROS- graduatedFrom 1,310 89%
PERA hasProfessionalAffiliation 107 90%

hasWonPrize 1,309 99%
hasAcademicAdvisor 1,845 22%
hasCollaborator 8 100%
facultyAt 3,147 49%

SOFIE graduatedFrom 5,088 56%
hasProfessionalAffiliation 7 100%
hasWonPrize 1,553 99%

Table 3: Performance for all relations

PROSPERA has high precision across all the relations whereas
SOFIE’s precision varies widely across relations. Furthermore, for
the hasCollaborator and hasProfessionalAffiliation relations, PRO-
SPERA has much higher recall, this is because these two relations
had the fewest number of seeds and the generilization capability
of patterns in PROSPERA enabled further instances to be disco-
vered without requiring exact matches between patterns. For the
graduatedFrom and facultyAt relations, SOFIE’s recall suffers be-
cause these two relations have overlapping instances, since a person
can be a faculty remember at the institution where they graduated
from. Here again PROSPERA is robust to this scenario. PROSPE-
RA has the same precision as SOFIE for the hasWonPrize relation.
This is because this relation is typically expressed with the same
patterns and thus the exact pattern matching in SOFIE works well.
PROSPERA has a slightly lower recall than SOFIE for this relation,
primarily because certain weak seed patterns that do not meet the
requirements in PROSPERA mean that instances expressed with
similar patterns are not discovered.

To quantify the impact of the number of seeds used, we evaluated
performance of the hasAcademicAdvisor for varying numbers of
seeds. Table 4 shows the results.

# seeds # extractions Precision
15 48 89%

PROSPERA 50 115 81%
212 372 83%
15 4 100%

SOFIE 50 131 31%
212 1,845 22%

Table 4: Precision and recall for the hasAcademicAdvisor for
varying numbers of seeds

PROSPERA has high precision and reasonable recall even when
only a small number of seeds are used. SOFIE on the other hand
has high precision when only a few seeds are used, however, in
this case SOFIE’s recall is extremely low. When many seeds are
used, there is a high chance of noisy patterns occurring with a few
instances, for a relation like the hasAcademicAdvisor relation, for
this reason SOFIE’s precision degrades, PROSPERA on the other
hand still achieves high precision further demonstrating robustness.

We also compared PROSPERA to the SNOWBALL[1] system,
using one of their experiments (for which a non-copyright-protected
part of the data was available[22]). In this test run, with the goal
of extracting the headquarters of companies, PROSPERA reached
85% for a recall of 42 newly extracted, correct facts, SOFIE also
extracted 42 correct facts with 91% precision, whereas the original
SNOWBALL reached 57% precision with 37 correct facts.

In general, not many information-extraction systems are publicly
available for comparative experiments. Moreover, many results in
the literature cannot be reproduced in a full experiment because
the papers do not disclose sufficient details about their experiments
(e.g., the datasets and chosen seeds). Therefore, we cannot present
a broader set of comparisons with other systems.

5. RELATED WORK
Using various forms of pattern matching for fact extraction from

natural-language documents has a long history in the NLP, AI and
DB communities, dating back to the work by Hearst [15]. Hearst
patterns [15] were the first part-of-speech-enriched regular expres-
sions (so-called lexico-syntactic patterns) which aim to identify in-
stances of predefined relationship types from free text. Hearst pat-
terns are hand-crafted; for arbitrary target relations (such as has-
Collaborator or hasAcademicAdvisor) it would be difficult to come
up with an exhaustive set of expressive yet accurate patterns.

Seminal work by Brin [4] was centered around the duality of
facts and patterns which refers to the iterative mutual enrichment
between patterns and facts, whereby seeds can be used to find new
patterns and new patterns can be used to find more seeds. The itera-
tive process outlined above is powerful but it is susceptible to drif-
ting away from its target. While high recall is easily possible, the
precision would often be unacceptable. In our approach, reasoning
serves to ensure high precision.

KnowItAll [14], and Text2Onto [9] improved the statistical as-
sessment of fact candidates and patterns in a variety of ways, regar-
ding robustness (lower false-positive rate while still retaining high
recall), expressiveness (e.g., by adding part-of-speech tagging and
other NLP-based features), and efficiency (lower-cost estimates the
statistical measures). The LEILA approach [20] uses dependency-
parsing-based features for boosted precision, and also extends Brin’s
bootstrapping technique by incorporating both positive and negati-
ve seeds. TextRunner [27] extended the pattern-fact bootstrapping
paradigm to Open IE, where the harvesting is not focused on a par-
ticular relation but considers all relationships expressed in verbal
phrases. This relaxation however makes it very difficult to apply
any form of consistency reasoning on the extracted data.



More recent work on rule-based fact gathering is based on DB-
style declarative IE. [10, 16, 19] have shown how to combine query
processing for extraction and consistency-centered inferencing into
a unified framework. A very nice showcase is the (at least largely)
automated construction and maintenance of the DBLife community
portal (dblife.cs.wisc.edu), which is based on the Cimple tool sui-
te [10]. Rule-based fact extraction has also been customized to Wi-
kipedia as a knowledge source, primarily to exploit the great asset
provided by infoboxes. DBpedia [3] has pioneered the massive ex-
traction of infobox facts. It uses simple, recall-oriented techniques
and essentially places all attribute-value pairs into its knowledge
base as they are. YAGO [21], on the other hand, uses a suite of
carefully designed rules for frequently used infobox attributes to
extract and normalize the corresponding values.

Learning and reasoning-based methods include the StatSnow-
ball [28], a powerful machinery for fact harvesting that makes in-
tensive use of Markov Logic Networks (MLNs) and Conditional
Random Fields (CRFs). Moreover, the Kylin/KOG framework [24,
26] is an interesting application of MLNs which also aims to infer
“missing infobox values” in Wikipedia. SOFIE [22] combines pat-
tern learning with consistency reasoning cast as a weighted max-sat
problem to disambiguate entities and extract facts from from text.
In the ReadTheWeb project [7], semi-supervised learning ensem-
bles have been combined with constraints for extracting entities and
facts from a large Web corpus.

6. CONCLUSIONS
Previous work in the SOFIE system introduced coupling pattern

matching with logical reasoning for information extaction. The pat-
tern matching used there is based on exact matches between pat-
terns and does not evaluate the strength of patterns. This has negati-
ve implications for recall and precision. We introduced an approach
for associating patterns with quality measures. Our approach allo-
wed us to prune and bound the clauses that are passed on to the re-
asoner. Experiments demonstrated performance improvements on
precision, recall and runtimes.
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