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Abstract

This paper presents PATTY: a large resource
for textual patterns that denote binary relations
between entities. The patterns are semanti-
cally typed and organized into a subsumption
taxonomy. The PATTY system is based on ef-
ficient algorithms for frequent itemset mining
and can process Web-scale corpora. It har-
nesses the rich type system and entity popu-
lation of large knowledge bases. The PATTY
taxonomy comprises 350,569 pattern synsets.
Random-sampling-based evaluation shows a
pattern accuracy of 84.7%. PATTY has 8,162
subsumptions, with a random-sampling-based
precision of 75%. The PATTY resource
is freely available for interactive access and
download.

1 Introduction

Motivation. WordNet (Fellbaum 1998) is one of the
most widely used lexical resources in computer sci-
ence. It groups nouns, verbs, and adjectives into sets
of synonyms, and arranges these synonyms in a tax-
onomy of hypernyms. WordNet is limited to single
words. It does not contain entire phrases or pat-
terns. For example, WordNet does not contain the
pattern X is romantically involved with Y. Just like
words, patterns can be synonymous, and they can
subsume each other. The pattern X is romantically
involved with Y is synonymous with the pattern X is
dating Y. Both are subsumed by X knows Y. Patterns
for relations are a vital ingredient for many appli-
cations, including information extraction and ques-
tion answering. If a large-scale resource of relational
patterns were available, this could boost progress in
NLP and AI tasks.

Yet, existing large-scale knowledge bases are
mostly limited to abstract binary relationships be-
tween entities, such as “bornIn” (Auer 2007; Bol-
lacker 2008; Nastase 2010; Suchanek 2007). These
do not correspond to real text phrases. Only the Re-
Verb system (Fader 2011) yields a larger number of
relational textual patterns. However, no attempt is
made to organize these patterns into synonymous
patterns, let alone into a taxonomy. Thus, the pat-
terns themselves do not exhibit semantics.

Goal. Our goal in this paper is to systematically
compile relational patterns from a corpus, and to im-
pose a semantically typed structure on them. The
result we aim at is a WordNet-style taxonomy of
binary relations. In particular, we aim at patterns
that contain semantic types, such as 〈singer〉 sings
〈song〉. We also want to automatically generalize
syntactic variations such as sings her 〈song〉 and
sings his 〈song〉, into a more general pattern sings
[prp] 〈song〉 with POS tag [prp]. Analogously but
more demandingly, we want to automatically infer
that the above patterns are semantically subsumed
by the pattern 〈musician〉 performs on 〈musical
composition〉 with more general types for the entity
arguments in the pattern.

Compiling and organizing such patterns is chal-
lenging for the following reasons. 1) The number
of possible patterns increases exponentially with the
length of the patterns. For example, the string “Amy
sings ‘Rehab”’ can give rise to the patterns 〈singer〉
sings 〈song〉, 〈person〉 sings 〈artifact〉, 〈person〉
[vbz] 〈entity〉, etc. If wildcards for multiple words
are allowed (such as in 〈person〉 sings * 〈song〉), the
number of possible patterns explodes. 2) A pattern



can be semantically more general than another pat-
tern (when one relation is implied by the other re-
lation), and it can also be syntactically more gen-
eral than another pattern (by the use of placehold-
ers such as [vbz]). These two subsumption orders
have a non-obvious interplay, and none can be ana-
lyzed without the other. 3) We have to handle pattern
sparseness and coincidental matches. If the corpus
is small, e.g., the patterns 〈singer〉 later disliked her
song 〈song〉 and 〈singer〉 sang 〈song〉, may apply to
the same set of entity pairs in the corpus. Still, the
patterns are not synonymous. 4) Computing mutual
subsumptions on a large set of patterns may be pro-
hibitively slow. Moreover, due to noise and vague
semantics, patterns may even not form a crisp tax-
onomy, but require a hierarchy in which subsump-
tion relations have to be weighted by statistical con-
fidence measures.
Contributions. In this paper, we present PATTY, a
large resource of relational patterns that are arranged
in a semantically meaningful taxonomy, along with
entity-pair instances. More precisely, our contribu-
tions are as follows:

1) SOL patterns: We define an expressive fam-
ily of relational patterns, which combines syntac-
tic features (S), ontological type signatures (O), and
lexical features (L). The crucial novelty is the addi-
tion of the ontological, semantic dimension to pat-
terns. When compared to a state-of-the-art pattern
language, we found that SOL patterns yield higher
recall while achieving similar precision.

2) Mining algorithms: We present efficient and
scalable algorithms that can infer SOL patterns and
subsumptions at scale, based on instance-level over-
laps and an ontological type hierarchy.

3) A large Lexical resource:. On the Wikipe-
dia corpus, we obtained 350,569 pattern synsets
with 84.7% precision. We make our pat-
tern taxonomy available for further research at
www.mpi-inf.mpg.de/yago-naga/patty/ .

The paper is structured as follows. Section 2 dis-
cusses related work. Section 3 outlines the basic
machinery for pattern extraction. Section 4 intro-
duces our SOL pattern model. Sections 5 and 6
present the syntactic and semantic generalization of
patterns. Section 7 explains how to arrange the pat-

terns into a taxonomy. Section 8 reports our experi-
mental findings.

2 Related Work

A wealth of taxonomic knowledge bases (KBs)
about entities and their semantic classes have be-
come available. These are very rich in terms of
unary predicates (semantic classes) and their entity
instances. However, the number of binary relations
(i.e., relation types, not instances) in these KBs is
usually small: Freebase (Bollacker 2008) has a few
thousand hand-crafted relations. WikiNet (Nastase
2010) has automatically extracted ca. 500 relations
from Wikipedia category names. DBpedia (Auer
2007) has automatically compiled ca. 8000 names
of properties from Wikipedia infoboxes, but these
include many involuntary semantic duplicates such
as surname and lastname. In all of these projects,
the resource contains the relation names, but not the
natural language patterns for them. The same is true
for other projects along these lines (Navigli 2010;
Philpot 2008; Ponzetto 2007; Suchanek 2007).

In contrast, knowledge base projects that auto-
matically populate relations from Web pages also
learn surface patterns for the relations: examples
are TextRunner/ReVerb (Banko 2007; Fader 2011),
NELL (Carlson 2010; Mohamed11), Probase (Wu
2011), the dynamic lexicon approach by (Hoffmann
2010; Wu 2008), the LDA-style clustering approach
by (Yao 2011), and projects on Web tables (Li-
maye 2010; Venetis 2011). Of these, only TextRun-
ner/ReVerb and NELL have made large pattern col-
lections publicly available.

ReVerb (Fader 2011) constrains patterns to verbs
or verb phrases that end with prepositions, while
PATTY can learn arbitrary patterns. More impor-
tantly, all methods in the TextRunner/ReVerb family
are blind to the ontological dimension of the enti-
ties in the patterns. Therefore, there is no notion of
semantic typing for relation phrases as in PATTY.

NELL (Carlson 2010) is based on a fixed set
of prespecified relations with type signatures, (e.g.,
personHasCitizenship: 〈person〉 × 〈country〉), and
learns to extract suitable noun-phrase pairs from a
large Web corpus. In contrast, PATTY discovers pat-
terns for relations that are a priori unknown.



In OntExt (Mohamed11), the NELL architecture
was extended to automatically compute new re-
lation types (beyond the prespecified ones) for a
given type signature of arguments, based on a clus-
tering technique. For example, the relation mu-
sicianPlaysInstrument is found by clustering pat-
tern co-occurrences for the noun-phrase pairs that
fall into the specific type signature 〈musician〉 ×
〈musicinstrument〉. This technique works for one
type signature at a time, and does not scale up to
mining a large corpus. Also, the technique is not
suitable for inferring semantic subsumptions. In
contrast, PATTY efficiently acquires patterns from
large-scale corpora and organizes them into a sub-
sumption hierarchy.

Class-based attribute discovery is a special case
of mining relational patterns (e.g., (Alfonseca 2010;
Pasca 2007; Pasca 2008; Reisinger 2009)). Given a
semantic class, such as movies or musicians, the task
is to determine relevant attributes, such as cast and
budget for movies, or albums and biography for mu-
sicians, along with their instances. Unlike PATTY’s
patterns, the attributes are not typed. They come
with a prespecified type for the domain, but without
any type for the range of the underlying relation.

There are further relation-centric tasks in NLP
and text mining that have commonalities with our
endeavor, but differ in fundamental ways. The
SemEval-2010 task on classification of semantic re-
lations between noun-phrase pairs (Hendrickx 2010)
aimed at predicting the relation for a given sentence
and pair of nominals, but used a fixed set of prespec-
ified relations. Another task in this research avenue
is to characterize and predict the argument types for
a given relation or pattern (Kozareva 2010; Nakov
2008). This is closer to KB population and less re-
lated to our task of discovering relational patterns
and systematically organizing them.

From a linguistic perspective, there is ample
work on patterns for unary predicates of the form
class(entity). This includes work on entailment of
classes, i.e., on is-a and subclassOf relationships.
Entailment among binary predicates of the form re-
lation(entity1, entity2) has received less attention
(Lin 2001; Chklovski 2004; Hashimoto 2009; Be-
rant 2011). These works focus solely on verbs, while

PATTY learns arbitrary phrases for patterns.
Several lexical resources capture verb categories

and entailment: WordNet 3.0 (Fellbaum 1998) con-
tains about 13,000 verb senses, with troponymy and
entailment relations; VerbNet (Kipper 2008) is a hi-
erarchical lexicon with more than 5,000 verb senses
in ca. 300 classes, including selectional preferences.
Again, all of these resources focus solely on verbs.

ConceptNet 5.0 (Havasi 2007) is a thesaurus of
commonsense knowledge built as a crowdsourcing
endeavor. PATTY, in contrast, is constructed fully
automatically from large corpora. Automatic learn-
ing of paraphrases and textual entailment has re-
ceived much attention (see the survey of (Androut-
sopoulos 2010)), but does not consider fine-grained
typing for binary relations, as PATTY does.

3 Pattern Extraction

This section explains how we obtain basic textual
patterns from the input corpus. We first apply the
Stanford Parser (Marneffe 2006) to the individual
sentences of the corpus to obtain dependency paths.
The dependency paths form a directed graph, with
words being nodes and dependencies being edges.
For example, the sentence “Winehouse effortlessly
performed her song Rehab.” yields the following de-
pendency paths:

nsubj(performed-3, Winehouse-1)
advmod(performed-3, effortlessly-2)
poss(Rehab-6, her-4)
nn(Rehab-6, song-5)
dobj(performed-3, Rehab-6)

While our method also works with patterns obtained
from shallow features such as POS tags, we found
that dependency paths improve pattern extraction
precision especially on long sentences.

We then detect mentions of named entities in the
parsed corpus. For this purpose, we use a dictio-
nary of entities. This can be any resource that con-
tains named entities with their surface names and se-
mantic types (Auer 2007; Suchanek 2007; Hoffart
2011; Bollacker 2008). In our experiments, we used
the YAGO2 knowledge base (Hoffart 2011). We
match noun phrases that contain at least one proper
noun against the dictionary. For disamiguation, we



use a simple context-similarity prior, as described
in (Suchanek 2009). We empirically found that this
technique has accuracy well above 80% (and higher
for prominent and thus frequently occurring enti-
ties). In our example, the entity detection yields the
entities Amy Winehouse and Rehab (song).

Whenever two named entities appear in the same
sentence, we extract a textual pattern. For this pur-
pose, we traverse the dependency graph to get the
shortest path that connects the two entities. In the
example, the shortest path between “Winehouse”
and “Rehab” is: Winehouse nsubj performed dobj
Rehab. In order to capture only relations that refer
to subject-relation-object triples, we only consider
shortest paths that start with subject-like dependen-
cies, such as nsubj, rcmod and partmod. To re-
flect the full meaning of the patterns, we expand the
shortest path with adverbial and adjectival modifiers,
for example the advmod dependency. The sequence
of words on the expanded shortest path becomes our
final textual pattern. In the example, the textual pat-
tern is Amy Winehouse effortlessly performed Rehab
(song).

4 SOL Pattern Model

Textual patterns are tied to the particular surface
form of the text. Therefore, we transform the textual
patterns into a new type of patterns, called syntactic-
ontologic-lexical patterns (SOL patterns). SOL pat-
terns extend lexico-syntactic patterns by ontological
type signatures for entities. The SOL pattern lan-
guage is expressive enough to capture fine-grained
relational patterns, yet simple enough to be dealt
with by efficient mining algorithms at Web scale.

A SOL pattern is an abstraction of a textual pat-
tern that connects two entities of interest. It is a
sequence of words, POS-tags, wildcards, and onto-
logical types. A POS-tag stands for a word of the
part-of-speech class. We introduce the special POS-
tag [word], which stands for any word of any POS
class. A wildcard, denoted ∗, stands for any (pos-
sibly empty) sequence of words. Wildcards are es-
sential to avoid overfitting of patterns to the corpus.
An ontological type is a semantic class name (such
as 〈singer〉) that stands for an instance of that class.
Every pattern contains at least two types, and these

are designated as entity placeholders.
A string and a pattern match, if there is an order-

preserving bijection from sequences of words in the
string to items in the pattern, so that each item can
stand for the respective sequence of words. For ex-
ample, the pattern 〈person〉’s [adj] voice * 〈song〉
matches the strings “Amy Winehouse’s soft voice
in ‘Rehab”’ and “Elvis Presley’s solid voice in his
song ‘All shook up”’. The type signature of a pat-
tern is the pair of the entity placeholders. In the ex-
ample, the type signature is person × song. The
support set of a pattern is the set of pairs of entities
that appear in the place of the entity placeholders
in all strings in the corpus that match the pattern.
In the example, the support set of the pattern could
be {(Amy,Rehab), (Elvis, AllShookUp)}. Each
pair is called a support pair of the pattern.

Pattern B is syntactically more general than pat-
tern A if every string that matches A also matches
B. Pattern B is semantically more general than A
if the support set of B is a superset of the support
set of A. If A is semantically more general than B
and B is semantically more general than A, the pat-
terns are called synonymous. A set of synonymous
patterns is called a pattern synset. Two patterns, of
which neither is semantically more general than the
other, are called semantically different.

To generate SOL patterns from the textual pat-
terns, we decompose the textual patterns into n-
grams (n consecutive words). A SOL pattern con-
tains only the n-grams that appear frequently in the
corpus and the remaining word sequences are re-
placed by wildcards. For example, in the sentence
“was the first female to run for the governor of”
might give rise to the pattern * the first female * gov-
ernor of, if “the first female” and “governor of” are
frequent in the corpus.

To find the frequent n-grams efficiently, we apply
the technique of frequent itemset mining (Agrawal
1993; Srikant 1996): each sentence is viewed as a
“shopping transaction” with a “purchase” of several
n-grams, and the mining algorithm computes the n-
gram combinations with large co-occurrence sup-
port1. These n-grams allow us to break down a sen-

1Our implementation restricts n-grams to length 3 and uses
up to 4 n-grams per sentence



tence into wildcard-separated subsequences, which
yields an SOL pattern. We generate multiple pat-
terns with different types, one for each combination
of types that the detected entities have in the under-
lying ontology.

We quantify the statistical strength of a pattern by
means of its support set. For a given pattern p with
type signature t1 × t2, the support of p is the size
of its support set. For confidence, we compare the
support-set sizes of p and an untyped variant pu of
p, in which the types 〈t1〉 and 〈t2〉 are replaced by
the generic type 〈entity〉. We define the confidence
of p as the ratio of the support-set sizes of p and pu.

5 Syntactic Pattern Generalization

Almost every pattern can be generalized into a syn-
tactically more general pattern in several ways: by
replacing words by POS-tags, by introducing wild-
cards (combining more n-grams), or by generaliz-
ing the types in the pattern. It is not obvious which
generalizations will be reasonable and useful. We
observe, however, that generalizing a pattern may
create a pattern that subsumes two semantically dif-
ferent patterns. For example, the generalization
〈person〉 [vb] 〈person〉 subsumes the two semanti-
cally different patterns 〈person〉 loves 〈person〉 and
〈person〉 hates 〈person〉. This means that the pattern
is semantically meaningless.

Therefore, we proceed as follows. For every pat-
tern, we generate all possible generalizations. If a
generalization subsumes multiple patterns with dis-
joint support sets, we abandon the generalized pat-
tern. Otherwise, we add it to our set of patterns.

6 Semantic Pattern Generalization

The main difficulty in generating semantic subsump-
tions is that the support sets may contain spurious
pairs or be incomplete, thus destroying crisp set in-
clusions. To overcome this problem, we designed
a notion of a soft set inclusion, in which one set S
can be a subset of another set B to a certain degree.
One possible measure for this degree is the confi-
dence, i.e., the ratio of elements in S that are in B,
deg(S ⊆ B) = |S ∩ B|/|S|. However, if a support
set S has only few elements due to sparsity, it may
become a subset of another support setB, even if the

two patterns are semantically different. Therefore,
one has to take into account also the support, i.e., the
size of the set S. Traditionally, this is done through a
weighted trade-off between confidence and support.

To avoid the weight tuning, we instead devised
a probabilistic model. We interpret S as a random
sample from the “true” support set S′ that the pattern
would have on an infinitely large corpus. We want
to estimate the ratio of elements of S′ that are in
B. This ratio is a Bernoulli parameter that can be
estimated from the ratio of elements of the sample S
that are in B. We compute the Wilson score interval
[c − d, c + d] (Brown 2001) for the sample. This
interval guarantees that with a given probability (set
a priori, usually to α = 95%), the true ratio falls into
the interval [c − d, c + d]. If the sample is small, d
is large and c is close to 0.5. If the sample is large,
d decreases and c approaches the naive estimation
|S ∩ B|/|S|. Thereby, the Wilson interval center
naturally balances the trade-off between confidence
and the support. Hence we define deg(S ⊂ B) = c.
This estimator may degrade when the sample size
is too small We can alternatively use a conservative
estimator deg(S ⊂ B) = c−d, i.e., the lower bound
of the Wilson score interval. This gives a low score
to the case where S ⊂ B if we have few samples (S
is small).

7 Taxonomy Construction

We now have to arrange the patterns in a semantic
taxonomy. A baseline solution would compare ev-
ery pattern support set to every other pattern support
set in order to determine inclusion, mutual inclusion,
or independence. This would be prohibitively slow.
For this reason, we make use of a prefix-tree for fre-
quent patterns (Han 2005). The prefix-tree stores
support sets of patterns. We then developed an algo-
rithm for obtaining set intersections from the prefix-
tree.

7.1 Prefix-Tree Construction

Suppose we have pattern synsets and their support
sets as shown in Table 1. An entity pair in a support
set is denoted by a letter. For example, in the sup-
port set for the pattern 〈Politican〉 was governor
of 〈State〉, the entry 〈A,80〉 may denote the entity



ID Pattern Synset & Support Sets
P1 〈Politician〉 was governor of 〈State〉

A,80 B,75 C,70
P2 〈Politician〉 politician from 〈State〉

A,80 B,75 C,70 D,66 E,64
P3 〈Person〉 daughter of 〈Person〉

F,78 G,75 H,66
P4 〈Person〉 child of 〈Person〉

I,88 J,87 F,78 G,75 K,64

Table 1: Pattern Synsets and their Support Sets

Root 

A p1,p2 

B 

C 

D 

p1,p2 

p1,p2 

p2 

E p2 

F 

G 

H 

p3 I 

J 

F 

p4 

G p4 

K p4 

p4 

p4 

p3 

p3 

Figure 1: Prefix-Tree for the Synsets in Table 1.

pair Arnold Schwarzenegger, California, with an oc-
currence frequency 80. The contents of the support
sets are used to construct a prefix-tree, where nodes
are entity pairs. If synsets have entity pairs in com-
mon, they share a common prefix; thus the shared
parts can be represented by one prefix-path in the
tree. This enables subsumptions to be directly “read
off” from the tree, while representing the tree in a
compact manner. To increase the chance of shared
prefixes, entity pairs are inserted into the tree in de-
creasing order of occurrence frequency.

The prefix-tree of support sets is a prefix-tree aug-
mented with synset information stored at the nodes.
Each node (entity pair) stores the identifiers of the
pattern sysnets whose support sets contain that en-
tity pair. In addition, each node stores a link to the
next node with the same entity pair.

Figure 1 shows the tree for the pattern synsets
in Table 1. The left-most path contains synsets P1

and P2. The two patterns have a prefix in common,

thus they share the same path. This is reflected by
the synsets stored in the nodes in the path. Synsets
P2 and P3 belong to two different paths due to dis-
similar prefixes although they have common nodes.
Instead, their common nodes are connected by the
same-entity-pair links shown as dotted lines in Fig-
ure 1. These links are created whenever the entity
pair already exists in the tree but with a prefix differ-
ent from the prefix of the synset being added to the
tree. The size of the tree is at most the total num-
ber of entity pairs making up the supports sets of the
synsets. The height of the tree is at most the size of
the the largest support set.

7.2 Mining Subsumptions from the Prefix-Tree

To efficiently mine subsumptions from the prefix-
tree, we have to avoid comparing every path to every
other path as this introduces the same inefficiencies
that the baseline approach suffers from.

From the construction of the tree it follows that
for any node Ni in the tree, all paths containing Ni

can be found by following node Ni’s links includ-
ing the same-entity-pair links. By traversing the en-
tire path of a synset Pi, we can reach all the pattern
synsets sharing common nodes with Pi. This leads
to our main insight: if we start traversing the tree
bottom up, starting at the last node in P ′

is support
set, we can determine exactly which paths are sub-
sumed by Pi. Traversing the tree this way for all
patterns gives us the sizes of the support set intersec-
tion. The determined intersection sizes can then be
used in the Wilson estimator to determine the degree
of semantic subsumption and semantic equivalence
of patterns.

7.3 DAG Construction

Once we have generated subsumptions between re-
lational patterns, there might be cycles in the graph
we generate. We ideally want to remove the minimal
total number of subsumptions whose removal results
in an a directed acyclic graph (DAG). This task is
related to the minimum feedback-arc-set problem:
given a directed graph, we want to remove the small-
est set of edges whose removal makes the remaining
graph acyclic. This is a well known NP-hard prob-
lem (Kann 1992). We use a greedy algorithm for



removing cycles and eliminating redundancy in the
subsumptions, thus effectively constructing a DAG.
Starting with a list of subsumption edges ordered by
decreasing weights, we construct the DAG bottom-
up by adding the highest-weight subsumption edge.
This step is repeated for all subsumptions, where we
add a subsumption to the DAG only if it does not
introduce cycles or redundancy. Redundancy occurs
when there already exists a path, by transitivity of
subsumptions, between pattern synsets linked by the
subsumption. This process finally yields a DAG of
pattern synsets – the PATTY taxonony.

8 Experimental Evaluation

8.1 Setup

The PATTY extraction and mining algorithms were
run on two different input corpora: the New York
Times archive (NYT) which includes about 1.8 Mil-
lion newspaper articles from the years 1987 to 2007,
and the English edition of Wikipedia (WKP), which
contains about 3.8 Million articles (as of June 21,
2011). Experiments were carried out, for each cor-
pus, with two different type systems: a) the type sys-
tem of YAGO2, which consists of about 350,000 se-
mantic classes from WordNet and the Wikipedia cat-
egory system, and b) the two-level domain/type hier-
archy of Freebase which consists of 85 domains and
a total of about 2000 types within these domains.

All relational patterns and their respective entity
pairs are stored in a MongoDB database. We evalu-
ated PATTY along four dimensions: quality of pat-
terns, quality of subsumptions, coverage, and de-
sign alternatives. These dimensions are discussed
in the following four subsections. We also per-
formed an extrinsic study to demonstrate the use-
fulness of PATTY for paraphrasing the relations
of DBpedia and YAGO2. In terms of runtimes,
he most expensive part is the pattern extraction,
where we identify pattern candidates through de-
pendency parsing and perform entity recognition
on the entire corpus. This phase runs about a
day for Wikipedia a cluster. All other phases of
the PATTY system take less than an hour. All
experimental data is available on our Web site at
www.mpi-inf.mpg.de/yago-naga/patty/.

8.2 Precision of Relational Patterns

To assess the precision of the automatically mined
patterns (patterns in this section always mean pattern
synsets), we sampled the PATTY taxonomy for each
combination of input corpus and type system. We
ranked the patterns by their statistical strength (Sec-
tion 4), and evaluated the precision of the top 100
pattern synsets. Several human judges were shown
a sampled pattern synset, its type signature, and a
few example instances, and then stated whether the
pattern synset indicates a valid relation or not. Eval-
uators checked the correctness of the type signature,
whether the majority of patterns in the synset is rea-
sonable, and whether the instances seem plausible.
If so, the synset was flagged as meaningful. The re-
sults of this evaluation are shown in column four of
Table 2, with a 0.9-confidence Wilson score inter-
val (Brown 2001). In addition, the same assessment
procedure was applied to randomly sampled synsets,
to evaluate the quality in the long tail of patterns.
The results are shown in column five of Table 2. For
the top 100 patterns, we achieve above 90% preci-
sion for Wikipedia, and above 80% for 100 random
samples.

Corpus Types Patterns Top 100 Random

NYT
YAGO2 86,982 0.89±0.06 0.72±0.09
Freebase 809,091 0.87 ±0.06 0.71±0.09

WKP
YAGO2 350,569 0.95±0.04 0.85±0.07
Freebase 1,631,531 0.93±0.05 0.80±0.08

Table 2: Precision of Relational Patterns

From the results we make two observations. First,
Wikipedia patterns have higher precision than those
from the New York Times corpus. This is because
some the language in the news corpus does not ex-
press relational information; especially the news on
stock markets produced noisy patterns picked up by
PATTY. However, we still manage to have a preci-
sion of close to 90% for the top 100 patterns and
around 72% for random sample on the NYT cor-
pus. The second observation is that the YAGO2
type system generally led to higher precision than
the Freebase type system. This is because YAGO2
has finer grained, ontologically clean types, whereas
Freebase has broader categories with a more liberal



assignment of entities to categories.

8.3 Precision of Subsumptions

We evaluated the quality of the subsumptions by
assessing 100 top-ranked as well as 100 randomly
selected subsumptions. As shown in Table 3, a
large number of the subsumptions are correct. The
Wikipedia-based PATTY taxonomy has a random-
sampling-based precision of 75%.

Corpus Types # Edges Top 100 Random

NYT
YAGO2 12,601 0.86±0.07 0.68±0.09
Freebase 80,296 0.89±0.06 0.41±0.09

WKP
YAGO2 8,162 0.83±0.07 0.75±0.07
Freebase 20,339 0.85±0.07 0.62±0.09

Table 3: Quality of Subsumptions

Example subsumptions from Wikipedia are:

• 〈person〉 nominated for 〈award〉 =

〈person〉 winner of 〈award〉
• 〈person〉 ’ s wife 〈person〉 =

〈person〉 ’s widow 〈person〉

8.4 Coverage

To evaluate the coverage of PATTY, we would need
a complete ground-truth resource that contains all
possible binary relations between entities. Unfor-
tunately, there is no such resource2. We tried to
approximate such a resource by manually compil-
ing all binary relations between entities that ap-
pear in Wikipedia articles of a certain domain. We
chose the domain of popular music, because it offers
a plethora of non-trivial relations (such as addict-
edTo(person,drug), coveredBy(musician,musician),
dedicatedSongTo(musician,entity))). We considered
the Wikipedia articles of five musicians (Amy Wine-
house, Bob Dylan, Neil Young, John Coltrane, Nina
Simone). For each page, two annotators hand-
extracted all relationship types that they would spot
in the respective articles. The annotators limited
themselves to relations where at least one argument
type is 〈musician〉. Then we formed the intersection
of the two annotators’ outputs (i.e., their agreement)

2Lexical resources such as WordNet contain only verbs, but
not binary relations such as is the president of. Other resources
are likely incomplete.

as a reasonable gold standard for relations identifi-
able by skilled humans. In total, the gold-standard
set contains 163 relations.

We then compared our relational patterns to the
relations included in four major knowledge bases,
namely, YAGO2, DBpedia (DBP), Freebase (FB),
and NELL, limited to the specific domain of music.
Table 4 shows the absolute number of relations cov-
ered by each resource. For PATTY, the patterns were
derived from the Wikipedia corpus with the YAGO2
type system.

gold standard PATTY YAGO2 DBP FB NELL
163 126 31 39 69 13

Table 4: Coverage of Music Relations

PATTY covered 126 of the 163 gold-standard re-
lations. This is more than what can be found in large
semi-curated knowledge bases such as Freebase,
and twice as much as Wikipedia-infobox-based re-
sources such as DBpedia or YAGO offer. Some
PATTY examples that do not appear in the other re-
sources at all are:

• 〈musician〉 PRP idol 〈musician〉 for the relation
hasMusicalIdol

• 〈person〉 criticized by 〈organization〉 for
critizedByMedia

• 〈person〉 headliner 〈artifact〉 for headlinerAt

• 〈person〉 successfully sued 〈person〉 for suedBy

• 〈musician〉 wrote hits for 〈musician〉 for wrote-
HitsFor,

This shows (albeit anecdotically) that PATTY’s pat-
terns contribute added value beyond today’s knowl-
edge bases.

8.5 Pattern Language Alternatives

We also investigated various design alternatives to
the PATTY pattern language. We looked at three
main alternatives: the first is verb-phrase-centric
patterns advocated by ReVerb (Fader 2011), the sec-
ond is the PATTY language without type signatures
(just using sets of n-grams with syntactic general-
izations), and the third one is the full PATTY lan-
guage. The results for the Wikipedia corpus and the



Reverb-style patterns PATTY without types PATTY full
# Patterns 5,996 184,629 350,569
Patterns Precision 0.96±0.03 0.74±0.08 0.95±0.04

# Subsumptions 74 15,347 8,162
Subsumptions Precision 0.79 ±0.09 0.58±0.09 0.83±0.07

# Facts 192,144 6,384,684 3,890,075
Facts Precision. 0.86 ±0.07 0.64±0.09 0.88 ±0.06

Table 5: Results for Different Pattern Language Alternatives

Relation Paraphrases Precision Sample Paraphrases
DBPedia/artist 83 0.96±0.03 [adj] studio album of, [det] song by . . .
DBPedia/associatedBand 386 0.74±0.11 joined band along, plays in . . .
DBPedia/doctoralAdvisor 36 0.558±0.15 [det] student of, under * supervision . . .
DBPedia/recordLabel 113 0.86±0.09 [adj] artist signed to, [adj] record label . . .
DBPedia/riverMouth 31 0.83±0.12 drains into, [adj] tributary of . . .
DBPedia/team 1,108 0.91±0.07 be * traded to, [prp] debut for . . .
YAGO/actedIn 330 0.88±0.08 starred in * film, [adj] role for . . .
YAGO/created 466 0.79±0.10 founded, ’s book . . .
YAGO/isLeaderOf 40 0.53±0.14 elected by, governor of . . .
YAGO/holdsPoliticalPosition 72 0.73±0.10 [prp] tenure as, oath as . . .

Table 6: Sample Results for Relation Paraphrasing

YAGO2 type system are shown in Table 5; preci-
sion figures are based on the respective top 100 pat-
terns or subsumption edges. We observe from these
results that the type signatures are crucial for pre-
cision. Moreover, the number of patterns, subsump-
tions and facts found by verb-phrase-centric patterns
(ReVerb (Fader 2011)), are limited in recall. Gen-
eral pattern synsets with type signatures, as newly
pursued in this paper, substantially outperform the
verb-phrase-centric alternative in terms of pattern
and subsumption recall while yielding high preci-
sion.

8.6 Extrinsic Study: Relation Paraphrasing

To further evaluate the usefulness of PATTY, we per-
formed a study on relation paraphrasing: given a re-
lation from a knowledge base, identify patterns that
can be used to express that relation. Paraphrasing
relations with high-quality patterns is important for
populating knowledge bases and counters the prob-
lem of semantic drifting caused by ambiguous and
noisy patterns.

We considered relations from two knowledge
bases, DBpedia and YAGO2, focusing on relations
that hold between entities and do not include literals.
PATTY paraphrased 225 DBpedia relations with a

total of 127,811 patterns, and 25 YAGO2 relations
with a total of 43,124 patterns. Among these we
evaluated a random sample of 1,000 relation para-
phrases. Table 6 shows precision figures for some
selected relations, along anecdotic example patterns.

Some relations are hard to capture precisely. For
DBPedia/doctoralAdvisor, e.g., PATTY picked up
patterns like “worked with” as paraphrases. These
are not entirely wrong, but we evaluated them as
false because they are too general to indicate the
more specific doctoral advisor relation.

Overall, however, the paraphrasing precision is
high. Our evaluation showed an average precision
of 0.76±0.03 across all relations.

9 Conclusion and Future Directions

This paper presented PATTY, a large resource of text
patterns. Different from existing resources, PATTY
organizes patterns into synsets and a taxonomy, sim-
ilar in spirit to WordNet. Our evaluation shows
that PATTY’s patterns are semantically meaning-
ful, and that they cover large parts of the relations
of other knowledge bases. The Wikipedia-based
version of PATTY contains 350,569 pattern synsets
at a precision of 84.7%, with 8,162 subsumptions,
at a precision of 75%. The PATTY resource is



freely available for interactive access and download
at www.mpi-inf.mpg.de/yago-naga/patty/.

Our approach harnesses existing knowledge bases
for entity-type information. However, PATTY is not
tied to a particular choice for this purpose. In fact,
it would be straightforward to adjust PATTY to us-
ing surface-form noun phrases rather than disam-
biguated entities, as long as we have means to infer
at least coarse-grained types (e.g., person, organiza-
tion, location). An interesting future direction is to
study this generalized setting. We would also like
to investigate the enhanced interplay of information
extraction and pattern extraction, and possible appli-
cations for question answering.
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