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ABSTRACT
Recent advances in information extraction have paved the way for
the automatic construction and growth of large, semantic knowl-
edge bases from Web sources. However, the very nature of these
extraction techniques entails that the resulting RDF knowledge bases
may face a significant amount of incorrect, incomplete, or even
inconsistent (i.e., uncertain) factual knowledge, which makes ef-
ficient query answering over this kind of uncertain RDF data a
challenge. Our engine, coined URDF, augments first-order rea-
soning by a combination of soft rules (Datalog-style implications),
which are grounded in a deductive fashion in order to derive new
facts from existing ones, and hard rules (mutual-exclusiveness con-
straints), which enforce additional consistency constraints among
both base and derived facts. At the core of our approach is an ef-
ficient approximation algorithm for this constrained form of the
weighted MaxSAT problem with soft and hard rules, allowing us to
dynamically resolve inconsistencies directly at query-time. Exper-
iments on real-world and synthetic data confirm a high robustness
and significantly improved runtime of our framework in compari-
son to state-of-the-art MCMC techniques.
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1. INTRODUCTION
The recent advent of information extraction techniques has en-

abled the automatic construction and growth of large, semantic
knowledge bases from Web sources. Knowledge bases such as
DBpedia [4], YAGO [25], Freebase.com, and TrueKnowledge.com
consist of many millions or even billions of facts, which are usually
captured in the form of RDF-style subject-predicate-object (SPO)
triples. Moreover, the Linked-Data initiative (LinkedData.org) en-
compasses these and many other RDF datasets, along with exten-
sive cross-linkage in the form of owl:sameAs properties between
entities in different data sources. For high coverage of entities
and their properties, it is natural to use automated, often heuristic
or probabilistic, methods to populate these knowledge bases, and,
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perhaps, also to automatically establish owl:sameAs links. Con-
sequently, these data sources may contain a significant fraction of
noise and incorrect triples. However, even if we accept such data
errors and inconsistencies, no knowledge base can ever be com-
plete, and even the entire Linked-Data cloud can hardly ever cover
all interesting properties of relevant entities.

Research on knowledge base construction has adopted proba-
bilistic models and statistical learning for cleaning the gathered
pool of raw fact candidates (typically extracted from Wikipedia
and textual or semi-structured Web pages). A powerful instrument
to this end is reasoning with consistency constraints (see, e.g., [6,
7, 16, 23, 26]). For example, specifying that a person can have
only one spouse (at a given snapshot in time) helps distinguish-
ing marriages from romantic affairs, and removing false hypothe-
ses for isMarriedTo triples. On the other hand, keeping only those
triples with the highest confidence (or likelihood) of being correct,
is an unduly eager and conservative approach. For example, when
searching for musician couples where both partners have won a
Grammy award, correct answers, such as John Lennon and Yoko
Ono, may well be composed out of low-confidence input triples,
as the join predicates in the query impose additional restrictions
and could implicitly “de-noise” the answers. For example, the
Lennon/Ono marriage is not in any of the Wikipedia infoboxes, and
respective extractions from free text should have lower confidence.

When query answers are empty because critical pieces of knowl-
edge are missing, reasoning over uncertain facts can be helpful to
produce—at least—likely or speculative results. To this end, de-
duction rules are an instrument to infer answers that go beyond the
extensionally represented content of the knowledge base. These
rules themselves may be uncertain as well. For example, suppose
we want to find the doctoral advisor of Alon Y. Halevy. Often
(but not always) the senior author on the first few papers of a re-
searcher is the doctoral advisor. Based on such a rule, we could
deduce that Yehoshua Sagiv is Halevy’s advisor. Moreover, deduc-
tion rules cover a wide range of RDF/S and OWL-based reason-
ing concepts, such as the owl:TransitiveProperty of predicates (e.g.,
for the rdfs:subClassOf property or over owl:sameAs links), which
lie at the expressive intersection of Datalog-style deductive reason-
ing and OWL-DL. Additional consistency constraints, on the other
hand, cover OWL concepts such as the owl:FunctionalProperty or
owl:disjointWith properties of predicates and classes.

In summary, we emphasize the following desiderata for query-
time reasoning over uncertain RDF triples:
1) to give answers to complex SPARQL queries over triples with

highly varying confidence values;
2) to overcome the incompleteness problem, exploit deduction rules,



which may themselves be uncertain, and to infer answers even
if some critical triples are missing;

3) to counter amplified noise and keep query-result precision high,
take into account consistency constraints in the specific context
of a user query;

4) achieve all of the above with high efficiency, so that queries can
be answered with interactive response time of a few seconds.

Our aim with URDF is to address the above desiderata in an in-
tegrated manner. Our implementation is based on top-down, on-
demand grounding of rules expressed in first-order logic, together
with a constrained form of weighted MaxSAT solving. Consider-
ing hard constraints jointly with MaxSAT reasoning over proposi-
tional clauses poses additional challenges; to our knowledge, these
have not been addressed in prior work for interactive, query-time
reasoning.

2. DEFINITIONS AND NOTATIONS
We are given a set X of Boolean variables, each variable taking

either the value true or false. The negation of a variable x ∈ X
(denoted as x̄), has the value true if and only if x is assigned false.
We shall refer to a variable x and its negation x̄ as a literal. A
Horn clause C is a set of literals containing at most one positive
literal. Given a truth assignment to variables, we shall say that a
Horn clause is satisfied if it contains at least one literal whose value
is true (clauses are assumed to be in disjunctive form). Every clause
C is associated with a positive weight w(C) ∈ R. A Horn formula
is defined as a conjunction of Horn clauses (and hence Horn for-
mulas are in conjunctive normal form, CNF). A Horn formula is
satisfiable if there is a truth assignment to all literals such that all
clauses are satisfied. As we deal with Horn formulas that might not
be satisfiable, we seek to find a truth assignment that maximizes
the total weight of satisfied clauses. An example of a Horn formula
is the following

(x1 ∨ x̄2) ∧ (x̄2 ∨ x3) equiv. to (x1 ← x2) ∧ (x3 ← x2),

where← denotes logical implication.
Given a set of relation types R and a set E of entities, a fact f

is defined as a triplet of the form f = (e1, e2, r), which expresses
an instance of a binary relation of type r ∈ R for two entities
e1, e2 ∈ E (i.e., we could denote the fact that “John is married to
Yoko”, where John and Yoko are both entities). Moreover, facts
may be uncertain. Hence every fact f is also associated with a pos-
itive weight w(f) ∈ R, expressing the degree of confidence in the
fact being correct. Moreover, every fact is also associated with a
Boolean variable xf ∈ X , whose value indicates whether the cor-
responding fact is true or false. In the following, we shall simplify
the notation and do not distinguish between variables and facts any-
more. Hence, assigning the value true to a fact f corresponds to
assigning true to the corresponding variable xf .

We define a knowledge base KB as a triplet KB = {F , C,S},
where F is a set of facts, C is a set of Horn clauses, and S is a
collection of disjoint sets of facts. We shall refer to C and S as soft
deduction rules and hard consistency constraints, respectively (or
soft and hard rules for short).

2.1 Soft Deduction Rules
We consider weighted Horn clauses with exactly one positive

head literal as soft rules. A soft rule could state, for example, that
“if Yoko and John are married and John lives in NY, then also Yoko
lives in NY”, with a confidence of 0.38 of being correct, which we
write as follows:
lives(Yoko,NY ) ← married(Yoko, John) ∧ lives(John,NY )[0.38]

To tackle the inherent incompleteness ofF , we lift soft rules into
first-order rules with universally quantified variables, which serve
as input to our knowledge base. Soft rules then have the shape
of first-order Horn clauses and can be written as Datalog-style im-
plications. To express the first-order rule that “married couples
usually live in the same place”, for example, we use the following
compact notation:

livesIn(p1 , loc1 ) ← marriedTo(p1 , p2 ) ∧ livesIn(p2 , loc1 )[0.38]

2.2 Hard Consistency Constraints
The set of facts F may contain inconsistent information. Hence,

we introduce hard consistency constraints that take the shape of a
collection of disjoint sets of mutually-exclusive facts S = S1, . . . ,
S|S|. We enforce the constraint that for each hard rule Sk, at most
one fact f ∈ Sk may be assigned the value true. For example, if
we observe two or more different birth dates for a person, clearly
something went wrong either during extraction or when reasoning
with soft rules. We can formally identify such an inconsistency by
formulating a consistency constraint as follows:

(date1 = date2 )← bornOn(p1, date1) ∧ bornOn(p1, date2)

Grounding this hard rules could, for example, then yields the fol-
lowing set of mutually exclusive facts

{bornOn(John, 1931), bornOn(John, 1940), bornOn(John, 1957)}

which specifies that John could be born either in 1931, 1940, 1957,
or in none of the above years. In contrast to soft rules, hard rules
may not be violated by any truth assignment to the corresponding
Boolean variables.

2.3 Problem Definition
As we deal with Horn formulas that might not be satisfiable, we

seek to find a truth assignment that maximizes the total weight of
the satisfied clauses. We call this problem weighted MaxSAT with
soft and hard rules which we formally define as follows.
We are given a set of facts F = {f1, f2, . . . , fn}, a collection C =
C1, . . . , Cm of clauses in Horn form (soft rules), and a collection
of sets S = S1, . . . , St that partition F (hard rules). Each clause
C ∈ C is associated with a positive weight w(C). We wish to find
a truth assignment to each variable f ∈ F such that for each set
in S at most one fact is assigned the value true, and the sum of the
weights of the satisfied clauses is maximized.

Given a knowledge base KB = {F , C,S} (in grounded form),
we define an instance of the MaxSAT problem with soft and hard
rules as follows. Every fact fi ∈ F is associated with a Boolean
variable. In addition, we introduce a unit clause Ci = {fi}, whose
weight is equal to the confidence of the corresponding fact. For
convenience of notation, for each fact fi, we also introduce a unit
hard rule Si = {fi} into S. As the MaxSAT problem with hard
and soft rules is a generalization of the classic MaxSAT problem
with Horn clauses, which is NP-Hard [11], it follows that also our
problem is NP-Hard. Because of the intractability to compute an
optimum solution for the above problem, we resort to devise an
approximation algorithm.

We remark that instead of hard rules, one could also enforce con-
sistency constraints by introducing soft rules with high weights.
However, in combination with an approximation algorithm, this ap-
proach may involve non-trivial issues as illustrated by the following
example. Consider the following two facts bornOn(John, 1931 )
and bornOn(John, 1940 ), whose weights are 0 and w � 0, re-
spectively. In order to enforce the hard rule that John can only have
one date of birth, we could introduce the following soft rule (x̄ ∨
ȳ) where x and y are the Boolean variables associated with facts
bornOn(John, 1931 ) and bornOn(John, 1940 ), respectively. How-
ever, it is not clear how to determine the weight W of such a soft



rule. If W is not large enough, then we could not enforce the hard
consistency constraint. On the other hand, if W is too large, then
any (1+ε)−approximation algorithm (for ε > 0) might assign true
to bornOn(John, 1931 ), as the ratio between such a solution and
the optimum is W

W+w
.

3. ALGORITHM
Our algorithm is inspired by Johnson’s approximation algorithm

for the original weighted MaxSAT [12] problem (considering only
weighted clauses but no additional consistency constraints). This is
based on the method of conditional probabilities [1] which allows
to convert a randomized approximation algorithm into a determin-
istic one, while preserving the approximation guarantee. From a
practical point of view, one advantage of this approach is that often
the resulting deterministic algorithms are efficient.

The first step is to compute a real value pi in [0, 1] for each fact
fi, satisfying the following property: the sum of all pi’s corre-
sponding to the facts within a same hard rule is at most 1. Each
pi is interpreted as the probability that fi is assigned true and is
computed in such a way that pi is large when the confidence in
fact fi being true is high (i.e., w(fi) is large) and small otherwise.
Due to space constraints, we omit the details of the computation
of the pi’s (see our technical report for more details [27]). Then at
each step t, we consider a hard rule St and we determine a truth
assignment for all facts in St which maximizes a carefully defined
objective function. Our potential function can be interpreted as the
expected total weight of satisfied clauses with each unassigned fact
fi being assigned true with probability pi (independently from the
facts not belonging to St).

Formally, we denote with Wt the value of our potential function
at step t. At the beginning of our algorithm all facts are unassigned
and the value of our potential function (W0) is defined as

W0 =
∑
C∈C

w(C) · P(C is satisfied).

At step t, let f̂t−1 = f̂1, . . . , f̂t−1 be the truth assignment for the
facts ft−1 = f1, . . . , ft−1 and let St be a hard rule considered
at step t. We denote with St = false the truth assignment that
assigns false to all facts in St. For every f in St, we define

Wt,f=true =
∑
C∈C

w(C) · P(C is sat.|f̂t−1 = ft−1, f = true)

where P(A|B) denotes a conditional probability. When all facts
in St are assigned false our potential function is denoted as

Wt,St=false =
∑
C∈C

w(C) · P(C is sat.|f̂t−1 = ft−1, St = false).

Our algorithm determines the truth assignment that maximizes the
current potential function by choosing the highest value among all
Wt,f=true’s and Wt,St=false and then assigns the corresponding
truth values to the facts in St. At each iteration, all clauses that
become satisfied by this truth assigment are removed from the set
of clauses.

Our algorithm stops when all facts have been assigned a truth
value. We remark that our algorithm is completely deterministic
(i.e., it always produces the same output given the same input). Al-
gorithm 1 shows pseudocode for our algorithm, while the approxi-
mation guarantee of our algorithm is stated in Theorem 1.

THEOREM 1. Given a set C of Horn clauses and a set S of
hard rules, let λ be the minimum number of negated literals in any

Algorithm 1 Weighted MaxSAT with Soft and Hard Rules
1: For each hard rule compute a prob. distribution over its facts.
2: For each hard rule St ∈ S:
3: · Let f be the fact with largest Wt,f=true among all facts in St.
· · If Wt,f=true ≥Wt,St=false then assign true to f ,

else assign false to all facts in St.
4: · Remove all satisfied clauses.

Horn clause that has at least two literals. Our algorithm is a p-
approximation algorithm for the MaxSAT problem with soft and
hard rules, where p is obtained by solving the equation p = 1−pλ.
The running time of our algorithm isO(m·n) in the worst case, with
m =

∑
c∈C |c| and n =

∑
s∈S |s|.

Moreover, we obtain the following result as a corollary.

COROLLARY 1. Our algorithm has an approximation guaran-
tee of 1/2 for general Horn clauses.

Due to space constraints, we defer the proof of Theorem 1 to our
technical report [27]. We are not aware of any closed form formula
to express the solutions of the equation p = 1 − pλ as a function
of λ. In the case λ = 2 we obtain p ≈ 0.618, while in the case
λ = 3 we obtain a ratio of roughly 0.68. We can also show an
approximation guarantee of 0.83 in some cases of interest (see our
technical report [27]). We remark that the algorithm reaches its
worst case running time when every fact occurs in every grounded
soft rule, i.e., when |C| = |F|, ∀C ∈ C. In practice, this case is
highly unlikely, and in fact our experiments confirm the efficiency
of our algorithm in real-world applications (see Figure 1a).

4. REASONING FRAMEWORK
In the absence of any soft and hard rules, URDF conforms to

a standard (conjunctive) SPARQL engine where all facts in F are
assumed to be true. Our key observation for query answering in
combination with MaxSAT solving is that still often only a small
subset of facts in F—often several orders of magnitude less facts
than those contained in the entire knowledge base—are relevant
for answering a specific query and for finding the corresponding
truth assignments to the facts that are related to the query. For this
purpose, we define the dependency graph DQ ⊆ F of a query Q
as follows.

DEFINITION 1. Given a knowledge base KB = {F , C,S} and
a conjunctive query Q, then:

• All possible groundings fi ∈ F of the query atoms qj ∈ Q are
facts in the dependency graph DQ of Q.

• If a grounded fact fn ∈ F is in DQ, then all grounded facts
f1, . . . , fn−1 ∈ F of all grounded soft rules C ∈ C, in which
fn is the head, are also in DQ.

• If a grounded fact fi ∈ F is in DQ, then all grounded facts
f1, . . . , fk ∈ F of the grounded hard rule S ∈ S, which are
mutually exclusive to fi, are also in DQ.

Definition 1 already yields a recursive algorithm to compute the
dependency graph, which is similar to SLD resolution [3] used in
Datalog and Prolog. In our case, SLD resolution is extended by
an additional grounding step for of hard rules, i.e., whenever we
ground a fact fi, we also iteratively ground all hard rules that are
related to it, using fi as a new subquery1. The URDF reasoning
steps are summarized in Algorithm 2.
1We employ a form of tabling (i.e., memoization) in order to cache
redundant subgoals. This table also serves to break potential cy-



Algorithm 2 URDF Reasoning Framework
Require: A knowledge baseKB with base facts F , first-order soft

rules C and first-order hard rules S, a conjunctive query Q
1: Initialize the dependency graph DQ = ∅.
2: Ground all literals qi ∈ Q via SLD resolution and add their

intersection to DQ.
3: Let CQ, SQ denote the sets of soft and hard rules grounded for

answering Q.
4: Expand DQ by all facts f in grounded rules CQ and SQ.
5: Construct a CNF formula over grounded clauses CQ and indi-

vidual facts DQ ⊆ F .
6: Solve the constrained weighted MaxSAT over the CNF and sets
SQ (Algorithm 1).

7: return DQ with truth assignments to all facts f ∈ DQ

Given a set of first order rules, this form of deductive grounding
has a well-known polynomial runtime for non-recursive Datalog
programs, and for linear, recursive programs, respectively. It how-
ever has an exponential complexity (in the number of facts) already
for Datalog programs with a single, non-linear, recursive rule [9].
Line 3 denotes the rules that were grounded during this resolution
phase in order to construct a Boolean formula in conjunctive nor-
mal form (CNF). These grounded rules are already available from
the previous SLD resolution and can be kept in a simple buffer of
the algorithm. The CNF construction in Line 5 itself is linear in the
size of the grounded rules CQ and SQ, because all grounded soft
rules are already in clause form, while the grounded hard rules can
be input into our MaxSAT solver directly as plain sets of mutually
exclusive facts. The next step in Line 6 requires the execution of
Algorithm 1 for the weighted MaxSAT problem (with both soft and
hard rules) described in Section 3.

We remark that the above form of dependency graph construc-
tion guarantees truth assignments to query answers that are consis-
tent with the truth assigments that would be found by the MaxSAT
solver for the entire sets of facts F , clauses C, and constraints S.
That is, the truth assignments to facts in the dependency graph
DQ ⊆ F for any query Q after MaxSAT solving are equivalent to
the truth assignments that would be obtained for these facts when
running the MaxSAT solver over the entire set of facts F in the
knowledge base (modulo ties and possible MaxSAT approximation
errors).

5. EXPERIMENTS
The following experiments were run on an AMD Opteron Quad-

Core 2.6 GHz server with 16 GB RAM, using Oracle-11g as stor-
age back-end for the underlying knowledge base. Physical I/O’s
were cached (thus aiming to eliminate variances due to disk op-
erations) by running each query once and then taking the average
runtime over 5 immediately repeated runs. Memory consumption
was generally not a delimiting factor, with up to 501 MB overall
memory consumption for our URDF Java implementation (includ-
ing the high overhead of the Java VM) and less than 10 MB for the
Alchemy package (see Subsection 5.2), implemented in C++.

5.1 YAGO Knowledge Base, Rules and Queries
The semantic graph of YAGO [25] serves as basis for our ex-

periments. YAGO is a large common-sense knowledge base that
has been extracted automatically from Wikipedia articles. YAGO
contains more than 2 million entities and 19 million facts. The

cles in SLD resolution if the same rule is attempted to be grounded
repeatedly with the same bindings of variables to constants.

facts include a class hierarchy of 200,000 classes with about 100
distinct relation types. Moreover, we employ 16 (partially recur-
sive) hand-crafted soft deduction rules of common-sense reasoning
about people and their relationships, together with 10 queries of
different shapes. We enforce functional properties of the predicates
bornIn, bornOnDate, diedIn, diedOnDate and marriedTo as con-
sistency constraints. As weights for base facts, we employ the con-
fidence weights provided by YAGO, while the weight for a soft rule
is calculated as a conditional probability for the entire rule to hold
(including the head literal), given that the body of the rule holds
(when grounded over YAGO, see [27] for a detailed description
of rules and queries). Queries were chosen such that many query
predicates are defined via deduction rules, which led to a recursion
depth of up to 7 in our experiments.

5.2 Markov Logic: MAP and MC-SAT
Alchemy2 provides a series of algorithms for statistical relational

learning and probabilistic inference based on the Markov Logic
Networks [23]. It implements various MCMC sampling techniques,
including MAP inference [24] (which is a memory-efficient stochas-
tic MaxSAT solver based on MaxWalkSAT) and MC-SAT [20].
MAP inference yields truth assignments to facts (which allows for
precision comparisons with URDF), whereas MC-SAT computes
probability distributions over the underlying Markov network (which
URDF does not do). Thus, we merely refer to MC-SAT for runtime
comparisons as a state-of-art technique for MCMC sampling. We
found grounding the above rules and queries over the entire YAGO
knowledge base in Alchemy under an open-world assumption not
to be feasible due to the nearly quadratic deflation of the resulting
MLN structure. Hence, we provide the facts and rules grounded by
URDF (via SLD resolution) directly as input to Alchemy, which
effectively leads to a closed-world grounding of rules in the cor-
responding MLN structure. MLN running times (for MAP and
MC-SAT) thus mostly correspond to the time needed for inference
by Alchemy over this much smaller network structure (plus some
overhead for parsing the formulas and grounding the network in
closed-world mode).

5.2.1 Basic Query Processing over YAGO.
The first setting reports running times and result precision for the

URDF reasoner compared to MAP inference and MC-SAT over the
basic YAGO setting. As for approximation quality, we measure the
relative precision of the URDF MaxSAT solver compared to the
MAP baseline: if the MaxSAT weight computed by URDF (MAX-
SAT-W) is at least as large as the weight achieved by MAP infer-
ence (MAP-W), and none of the hard constraints are violated by ei-
ther approach, we conclude that we found an equally good or even
better solution. Grounding time (SLD) denotes the time needed to
ground the query atoms, soft and hard rules, and to expand the de-
pendency graph via a top-down SLD resolution. In the following,
#C and #S denote the number of grounded soft and hard rules
(including unit clauses), while |C| and |S| denote the number of
occurrences of facts in all grounded soft and hard rules, respec-
tively. The overall query response time (in ms) for URDF is the
sum of SLD grounding and MaxSAT solving. Table 1 shows that
the URDF MaxSAT solver achieves more than two orders of mag-
nitude runtime improvement over MAP and MC-SAT, at 90 per-
cent precision compared to the MAP baseline for queries Q1–Q10.
That is, for 9 out of the 10 queries URDF finds the same MaxSAT
weight as MAP, while only for query Q7, the weight returned by
URDF is marginally worse. We also see that running MC-SAT is
generally more expensive than MAP inference. In this basic setting,
2
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Figure 1: Asymptotic MaxSAT behavior (a) and MaxSAT vs.
MAP and MC-SAT (b).

SLD grounding clearly dominates query response times for URDF.
However, for all queries we achieve interactive response times with
an overall runtime of at most 3 seconds per query.

5.2.2 Synthetic Rule Expansions.
To systematically investigate the asymptotic behavior of our al-

gorithm for large dependency graphs and more complex rules, we
employ synthetic expansions over the basic YAGO setting. In the
first expansion setting (Figure 1)(a), we expand each grounded soft
rule by 10 distinct facts as noise per expansion step, for each of the
query results depicted in Table 1. For the noisy facts, we apply uni-
form weights and weights following Gaussian distributions (with
σ2=1) around the original weights (µ) of the YAGO facts. We thus
simulate very complex CNF formulas with more than 105 occur-
rences of facts in soft rules. In the following plots, the grounding
time also includes the time for expanding the CNF formulas with
these noisy facts and thus is not constant for all runs. Figure 1(a)
confirms that the runtime of the MaxSAT algorithm is not affected
by the weighting schemes and remains equally efficient.

In the second expansion setting (Figure 1)(b), we do not only
vary the number of facts per soft rule, but also the number of groun-
ded soft and hard rules by replicating rules with different combina-
tions of noisy facts. That is, for each original grounded fact, we
introduce 10 mutually exclusive facts as noise, and, for each soft
rule, we expand the CNF by introducing 10 randomly expanded soft
rules at each expansion step. Overlap among soft rules is achieved
by uniform-randomly drawing the noisy facts from a static pool of
1,000 synthetic facts for all expansions. We keep Gaussian weights
for the expanded facts. This setting yields very large CNF formulas
with |C|+ |S| ranging from 2,312 to 2,321,488. More specifically,
we create constraints with up to 21,277 soft rules and 2,311,551
occurrences of facts in all soft rules, over an overall amount of only
9,937 distinct facts for the last expansion step. In this step, each
fact on average occurs in more than 232 rules, each with an aver-
age rule length of 108 facts. URDF solves the CNF formulas for
this expansion in 15.7 seconds, while remaining at a higher preci-
sion in computing the MaxSAT weight as MAP. We measure the
approximation precision only for the first three expansion steps,
yielding MaxSAT weights of 853.74, 975.02, 1, 099.34 for URDF
and 854.58, 937.74, 1, 069.70 for MAP, respectively. MAP does
not scale to larger CNFs than in these first three expansions, while
MC-SAT cannot be run beyond the first expansion step anymore.

5.2.3 Inductively Learned Rules.
The previous experiments were run over the entire YAGO knowl-

edge base, using 16 handcrafted rules in a fully recursive fashion.
To measure the cost of deduction over such a large knowledge base
with more general rules, we conduct runs over 42 recursive rules
learned inductively by a variant of FOIL [21], using YAGO as back-
ground knowledge. Figure 2(a) depicts the runtimes (in seconds)
for grounding queries Q1–Q10 over YAGO using these rules, how-
ever breaking SLD resolution at different deduction levels.

(a) (b)

Figure 2: SLD deduction levels (a) and LUBM results (b).

5.2.4 LUBM Benchmark.
Figure 2(b) shows a comparison of URDF runtimes (in seconds,

including both SLD and MaxSAT) versus the Jena Semantic Web
toolkit3 (using PostgreSQL 8.3 as storage backend) over the LUBM
benchmark setting [10] at scale factors (SF) 1, 5 and 10. Per-
formance for URDF is similar to that observed on YAGO, where
MaxSAT times are again much faster than SLD grounding times.
URDF outperforms Jena even in the grounding step by a large mar-
gin, while Jena failed to respond to many queries at increasing scale
factors (see also [10] for detailed results on LUBM).

6. RELATED WORK
Reasoning with inconsistency and uncertainty has been gaining

significant attention in the Database, Semantic Web, and Machine
Learning communities lately. In contrast to related works on un-
certain and probabilistic databases, we consider a more dynamic
way of querying and reasoning with deduction rules for intensional
relations. All database approaches for uncertain data we are aware
of— for example Trio [29], MayBMS [2], and MystiQ [5]—limit
queries to materialized data. Some systems support views [2, 29],
but only in materialized form which is equivalent to comprehensive
and thus expensive bottom-up grounding in Datalog. Moreover,
we also found recent approaches that adopt inference methods for
probabilistic graphical networks to database systems, such as [18]
or [28], to be primarily designed for batch processing and not to
be well suited for interactive querying. A similar observation also
holds for Probabilistic Logic Programming (PLP) and Answer Set
Programming (ASP). PLP combines logic programming (includ-
ing Datalog) with probabilistic reasoning. ProbLog [22] employs
SLD resolution [3] for grounding first-order rules, together with
Monte Carlo sampling or binary decision diagrams for probabilis-
tic inference over Boolean formulas obtained from SLD proofs.
ASP, on the other hand, is a more generic paradigm for solving
combinatorial problems with logic programs. In [19], the authors
study tractable subclasses of ASP with cardinality constraints and
weights. In Probabilistic Description Logic [14] (PDL) (see [15]
for an overview), probability ranges can be attached to subsumption
(or instance-of) statements. PDL generalizes the description logic
SHOIN (D) and can thus express functional rules. However, PDL
cannot deal with truly inconsistent input statements. Thus, in order
to apply PDL to a knowledge base with noisy confidence scores in
place of the probabilities, the probability ranges would have to be
reconciled upfront—which amounts to solving the inconsistencies
before starting the reasoner.

Statistical Relational Learning (SRL) has been gaining a strong
momentum in both the Database and Machine Learning commu-
nities, with Markov Logic Networks (MLNs) [23] probably being
one of the most generic approaches for combining first-order logic
and probabilistic graphical models. In these classes of graphical
models, sampling methods based on Markov Chain Monte Carlo

3
http://jena.sourceforge.net/

http://jena.sourceforge.net/


URDF/MLN URDF MLN MLN URDF MLN
#C |C| #S |S| SLD(ms) MaxSAT(ms) MAP(ms) MC-SAT(ms) MaxSAT-W MAP-W

Q1 49 109 22 25 243 1 80 65 19.92 19.92
Q2 14 20 10 12 53 1 814 17 9.69 9.69
Q3 32 40 27 28 25 7 814 17 20.56 20.56
Q4 46 82 23 30 178 1 861 221 20.77 20.77
Q5 176 203 167 167 3,062 13 1,564 60,970 161.93 161.93
Q6 318 342 307 310 584 4 111 173 292.40 292.40
Q7 100 220 41 48 222 4 1,344 1,032 27.06 27.91
Q8 195 199 192 193 93 7 1,877 36,330 188.21 188.21
Q9 44 71 27 35 143 7 1,407 142 26.37 26.37
Q10 89 89 89 89 71 4 283 5,267 86.83 86.83∑

1,063 1,375 905 937 4,674 49 9,155 104,234 853.74 854.58

Table 1: Basic YAGO results.

(MCMC) provide a family of efficient approximation algorithms
for probabilistic inference. Specifically, the algorithms employed
in Markov Logic for maximum-a-posteriori (MAP) inference [24]
and MC-SAT [20] constitute two state-of-the-art extensions to Max
WalkSAT-based, stochastic MaxSAT solvers [13] and Gibbs-style
sampling techniques, respectively. Our approach diverges from
Markov Logic in two basic aspects: grounding and inference. Ground-
ing a first-order Markov network in an open-world semantics works
by binding all entities (constants) to variables in the first-order rules
that match the type signature of the respective predicates. For bi-
nary predicates, this may result in grounded networks which are
often nearly quadratic in the number of entities in the knowledge
base. Unlike Markov Logic, we specifically focus on query-time
reasoning, with a deductive (closed-world) grounding of soft rules.

In [26], we presented a “self organizing framework for infor-
mation extraction”, where the main problem has been formulated
also as a MaxSAT problem. The main difference between this work
and [26] is that here we deal with hard and soft rules in a more prin-
cipled way, while in [26] hard rules are enforced by introducing soft
rules with large weights (see Section 2 for a discussion about why
a more principled approach is needed). Moreover, we present an
algorithm with an approximation guarantee of 0.83 in some cases
of interest. The MaxSAT problem is well studied in the theoretical
computer science community (see for example [8]). Here, we focus
on the effectiveness of our algorithms in solving real-life problems.
In [17], we presented an initial demo of our interactive reasoning
framework.

7. CONCLUSIONS
We presented a query-time reasoning approach for uncertain RDF

data and SPARQL queries over a combination of soft deduction
rules and hard consistency constraints. URDF employs a general-
ized weighted MaxSAT algorithm that guarantees consistent query
answers with regard to the hard constraints. Our experiments con-
firm that our MaxSAT approximation algorithm yields interactive
response times over formulas with many thousands of grounded
rules and facts, while empirically performing much better than the
provided lower bound of 1/2 for the approximation guarantee. We
also saw that, in many cases, the grounding time for the Datalog-
style soft deduction rules is the actual delimiting factor for query
response times. Our future work will investigate how to further
scale up inference by a combination of dynamic grounding over the
highly transient parts of the knowledge base with materialized facts
for the more static parts, as well as by distributing our grounding
and MaxSAT-based inference strategies.
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[18] F. Niu, C. Ré, A. Doan, and J. W. Shavlik. Tuffy: Scaling up statistical inference
in Markov Logic Networks using an RDBMS. PVLDB, 4(6):373–384, 2011.
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