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ABSTRACT
PATTY is a system for automatically distilling relational
patterns from the Web, for example, the pattern “X cov-
ered Y” between a singer and someone else’s song. We
have extracted a large collection of such patterns and or-
ganized them in a taxonomic manner, similar in style to
the WordNet thesaurus but capturing relations (binary
predicates) instead of concepts and classes (unary pred-
icates). The patterns are organized by semantic types
and synonyms, and they form a hierarchy based on sub-
sumptions. For example, “X covered Y” is subsumed by
“X sang Y”, which in turn is subsumed by “X performed
Y” (where X can be any musician, not just a singer).
In this paper we give an overview of the PATTY sys-
tem and the resulting collections of relational patterns.
We discuss the four main components of PATTY’s ar-
chitecture and a variety of use cases, including the para-
phrasing of relations, and semantic search over subject-
predicate-object triples. This kind of search can handle
entities, relations, semantic types, noun phrases, and re-
lational phrases.

1. INTRODUCTION
Ongoing efforts to extract information from Web data

have produced large-scale knowledge bases (KBs) [1, 2,
3, 13]. These KBs store information about real-world en-
tities, such as people, cities, or movies. The KBs mostly
use the RDF triple format to store the data. Each triple
contains a subject, a predicate, and an object. For ex-
ample, the fact that Amy Winehouse was born in South
Gate would be stored as the triple 〈Amy Winehouse, was-
BornIn, South Gate〉. The predicates of such triples are
called relations. Most KBs contain a limited number
of “standard” relations such as wasBornIn and isMar-
riedTo. However, there are many more relations that are
often missing. For example, in the music domain, one
might be interested in relations such as sang, covered-
Song and hadDuetWith. Before even populating such
relations with triples, one has to find which relations ex-
ist. With the PATTY project [10, 11, 12], we embarked
on automatically mining new relations from the Web.

Mining relations from the Web is difficult, because
relationships between entities are expressed in highly
diverse and noisy forms in natural-language text. For
example, Web sources may use the verbal phrases 〈X’s
voice in Y〉 or 〈X’s performance of the song Y〉 to say
that a person sang a song. We call these verbal phrases
patterns, as opposed to the canonical relation sang. So
the same relation can be expressed with different pat-
terns. Conversely, the same pattern may denote different
relations. For example, 〈X covered Y〉 could refer to
a singer performing someone else’s song or to a book
covering a historic event (e.g., “War and Peace covered
Napoleonic Wars”).

Understanding the semantic equivalence of patterns
and mapping them to canonical relations is the core chal-
lenge in relational information extraction (IE). This prob-
lem arises both in seed-based distantly supervised IE
with explicitly specified target relations, and in Open
IE where the relations themselves are unknown a priori
and need to be discovered in an unsupervised manner.
Comprehensively gathering and systematically organiz-
ing patterns for an open set of relations is the problem
addressed by the PATTY system.

The approach we take in PATTY is to systematically
harvest textual patterns from text corpora. We group
synonymous patterns into pattern synsets, so that pat-
terns that express the same relationship are grouped to-
gether. We organize these synsets into a subsumption
hierarchy, where more general relationships (such as
performed) subsume more special relationships (such
as sang). PATTY makes use of a generalized notion
of ontologically typed patterns. These patterns have a
type signature for the entities that they connect, as in
〈〈person〉 sang 〈song〉〉. The type signatures are derived
through the use of a dictionary of entity-class pairs, pro-
vided by knowledge bases like YAGO[13], Freebase [2],
or DBpedia[1].

This paper gives an overview of PATTY based on
work reported in [10], [11], and [12]. We first present the
design of the main components of PATTY’s architecture:
the pattern extraction, the SOL pattern model, the pattern
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generalization, and the subsumption mining. We then
present various applications that can make use of the
PATTY data.

The PATTY collections of relational phrases are freely
available at the URL http://www.mpi-inf.mpg.
de/yago-naga/patty/.

2. SYSTEM OVERVIEW & DESIGN
PATTY takes a text corpus as input and produces a

taxonomy of textual patterns as output. PATTY works in
four stages:

• Pattern extraction. A pattern is a surface string
that occurs between a pair of entities in a sentence,
thus the first step is to obtain basic textual patterns
from the input corpus. We first apply the Stanford
Parser [7] to every sentence of the corpus to obtain
dependency paths from which textual patterns are
extracted.

• SOL pattern transformation. The second step is
to transform plain patterns into syntactic-ontological-
lexical patterns (SOL) patterns thereby enhancing
them with ontological types. A SOL pattern is an
abstraction of a textual pattern that connects two
entities of interest. It is a sequence of words, POS-
tags, wildcards, and ontological types. A POS-tag
stands for a word of the part-of-speech class such
as a noun, verb, possessive pronoun, etc. An on-
tological type is a semantic class name (such as
〈singer〉) that stands for an instance of that class.
An example of a SOL pattern is: 〈〈person〉’s [adj]
voice in * 〈song〉〉.

• Pattern generalization. The third step is to gener-
alize the patterns, both syntactically and semanti-
cally. In terms of lexico-syntactic generalization,
patterns are generalized into a syntactically more
general pattern in several ways: by replacing words
by POS-tags, by introducing wildcards, or by gener-
alizing the types in the pattern. For semantic gener-
alization, we compute synonyms and subsumptions,
based on the set of entity pairs the patterns occur
with — support sets.

• Subsumption and synonym mining. The last step
is to arrange the patterns into groups of synonyms
and in a hierarchy based on hypernymy/hyponymy
relations between patterns. For semantic general-
ization, the main difficulty in generating semantic
subsumptions is that the support sets may contain
spurious pairs or be incomplete, thus destroying
crisp set inclusions. To overcome this problem, we
designed a notion of a soft set inclusion, in which
one set S can be a subset of another set B to a
certain degree. We thus produce a weighted graph
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Figure 1: PATTY Architecture

of subsumption relations between the patterns. Pat-
terns with perfectly overlapping support sets are
grouped into synonym sets (synsets), where each
such synset represents a single relation.

To find entities in the text, and to type them seman-
tically, PATTY requires a pre-defined knowledge base
as input. We use either YAGO [13] or Freebase [2]:
YAGO has classes derived from Wikipedia categories
and integrated with WordNet classes to form a hierarchy
of types; Freebase has a handcrafted type system with
upper level topical domains as top tier and about entity
classes as a second tier. Figure 1 shows the entire PATTY
architecture with the role of the knowledge base.

3. IMPLEMENTATION
PATTY is implemented in Java and makes use of the

Stanford NLP tool suite for linguistic processing, Hadoop
as the platform for large-scale text and data analysis
through MapReduce, and MongoDB for storing all result-
ing data in a key-value representation. The Web-based
frontend is running AJAX for asynchronous communica-
tion with the server.

Pattern Extraction. The output of pattern extraction
are patterns extracted from paths of grammatical depen-
dency graphs, along with the patterns we also output
part-of-speech tags of the words from the original sen-
tences. This information is used later for transforming
basic patterns into SOL patterns. For distributing pattern
extraction with MapReduce, each document is processed
independently by the mappers. No coordination is re-
quired between concurrent mappers. Thus the input to
the mappers are documents from the input corpus. The
mapper scans the document, one sentence at a time. If the
mapper encounters a sentence with a pair of interesting
entities, it emits triples of the form (e1, p, e2) along with
the necessary part-of-speech information. The MapRe-
duce algorithm is outlined in Figure 3.

SOL Pattern Transformation. We take as input the
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Figure 2: PATTY paraphrases for the DBPedia relation bandMember, the type signature and entities occurring
with the relation are also displayed.

function map(i, di)
List S ← all sentences from document (di)
for s ∈ S do
NE ← detect named entities in s
if |NE| > 1
G← generateDepedencyGraph(s)
P ← dependencyPaths(∀(ei, ej) ∈ NE)
for p ∈ P do

emit(ei, p, ej , pos)

Figure 3: MapReduce pattern extraction

basic patterns emitted by the pattern extraction mod-
ule and emit SOL patterns in the form of a sequences
of n-gram with type signatures. To generate SOL pat-
terns from the textual patterns, we decompose the textual
patterns into n-grams (n consecutive words) and then
generate type signatures for these n-gram patterns.

Frequent N-gram Mining. Only the n-grams that are
frequent in the corpus are retained in the SOL patterns,
the rest are replaced by wild-cards. The MapReduce
algorithm is outlined in Figure 4. Mappers take basic
patterns and generate n-grams and emit, for each n-gram,
an intermediate key-value pair consisting of the n-gram
and a support of 1. The reducers gather support counts
for any given n-gram and sum them up to obtain the final
support counts. Only those n-grams whose support is
above the specified values are emitted. Once we have

the frequent n-grams, a second MapReduce algorithm
is used to rewrite patterns into a form with frequent n-
grams only, disregarding infrequent ones. This way we
end up with n-gram patterns. Next, we generate type
signatures for the n-gram patterns.

function map(i, pi)
List N ← generateNgrams(pi)
for ni ∈ N do

emit(ni,1)

function reduce(ni, [v1, v2, v3, ...])
support← 0
for vi ∈ [v1, v2, v3, ...] do
support← support+ vi

IF support ≥ γ // where γ is minimum support
emit(ni, support)

Figure 4: MapReduce frequent n-gram mining

Type Signature Generation. For a pattern which is
not typed, we can easily compute the occurrence frequen-
cies for each type pair that the pattern occurs with. Based
on these initial statistics, we can mine the prevalent type
signatures needed to transform type-agnostic patterns
into one or more typed patterns.

Given a pattern with type statistics and the entity pairs
(e1, e2) in its support set, the key to inferring good type
signatures is in the types of entities in a pattern’s support
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set. We take all types that the knowledge base provides
for a given entity and use heuristics to eliminate unlikely
type signatures. For every (e1, e2), we create two sets,
one for all the types of e1, Te1 and one for all the types
of e2, Te2. We then compute the cross-product of the two
type sets T (e1) and T (e2) with an occurrence frequency
of 1. As we iterate over the entity pairs in the support set,
we accumulate the occurrence frequencies for every type
signature.

This procedure results in a list of possible type signa-
tures for each pattern. The set of candidate signatures
is often very large, so we enforce a threshold on the
occurrence frequency and drop all signatures below the
threshold.

Subsumption & Synonym Mining. Mining subsump-
tions and synonyms from pattern support sets is not triv-
ial, because a quadratic comparison of each and every
pattern support set to every other pattern’s support set
would be prohibitively slow. Therefore, we developed a
Map-Reduce algorithm for this purpose. As input, our
algorithm requires a set of patterns and their support sets.
As output, we compute a DAG of pattern subsumptions.
We first invert the support sets data. Instead of provid-
ing, for a pattern, all entity-pairs that occur with it, we
provide for an entity pair all the patterns that it occurs
with. This can be achieved by a Map-Reduce algorithm
that is similar to a standard text indexing Map-Reduce
algorithm.

From this data, we have to compute co-occurrence
counts of patterns, i.e., the number of entity-pairs that
the supports of two patterns have in common. Our Map-
Reduce algorithm for this purpose is as follows: The
mappers emit pairs of patterns that co-occur for every
entity-pair they occur with. The reducers aggregate co-
occurrence information to effectively output the sizes
of the set intersection of the possible subsumptions. A
single machine version of this algorithm is described in
[10, 12].

4. RESULTS
We applied PATTY to different corpora to generate

relation taxonomies of varying sizes and quality. The
version derived from Wikipedia (ca. 3.8 Million articles,
version of June 21, 2011) is the richest and cleanest
one. It consists of about 350,000 typed-pattern synsets
organized in a hierarchy with 8,162 subsumptions.

Precision. Random sampling-based assessment showed
that about 85% of the patterns are correct in the sense that
they denote meaningful relations with a proper type sig-
nature. Furthermore, the subsumptions have a sampling-
based accuracy of 83% and 75% for top-ranked and ran-
domly sampled subsumptions respectively. To further
evaluate the usefulness of PATTY, we performed a study
on relation paraphrasing: given a relation from a knowl-

edge base, identify patterns that can be used to express
that relation. We found paraphrasing accuracy to vary
from relation to relation: in some cases as low as 53%,
and in others as high as 96%, the results are shown in
Table 1 with 0.9-confidence Wilson score interval. A
random sample of 1000 paraphrases showed an average
precision of 0.76± 0.03 across all relations.

Recall. Without a reference resource in the form of
a comprehensive collection of relations, their synonyms
and subsumptions, evaluating recall is not truly possi-
ble. We estimated recall by manually compiling an ap-
proximate reference resource in the music domain. The
reference resource contains all binary relations between
entities that appear in Wikipedia articles about musicians.
Out of 169 ground-truth relations, PATTY contains 126.

Scalability. In terms of run-times, the most expensive
part is pattern extraction, where we identify pattern can-
didates through dependency parsing and perform entity
recognition on the entire corpus. This phase runs about
a day for Wikipedia on a Hadoop cluster with ten Dell
PowerEdge R720 machines and a10 GBit Ethernet con-
nection. Each machine has 64GB of main memory, eight
2TB SAS 7200 RPM hard disks, and two Intel Xeon
E5-2640 6-core CPUs. On the same cluster, all other
phases take less than an hour to execute.

5. APPLICATIONS
The data produced by PATTY is a valuable resource

for a variety of applications. First, it can boost IE and
knowledge base population tasks by its rich and clean
repository of paraphrases for the relations. Second, it
can improve Open IE by associating type signatures with
patterns. Third, it can help to discover “Web witnesses”
when assessing the truthfulness of search results or state-
ments in social media [5]. Last, it provides paraphrases
for detecting relationships in keyword queries, thus lift-
ing keyword search to the entity-relationship level. This
can help to understand questions and text snippets in
natural-language QA.

We developed a front-end to the PATTY data for ex-
ploring these possibilities in three ways: (1) using PATTY
as a thesaurus to find paraphrases for relations, (2) us-
ing PATTY as a simple kind of QA system to query the
database without having to know the schema, and (3)
exploring the relationships between entities, as expressed
in the textual sources. The Web-based front-end is run-
ning AJAX for asynchronous communication with the
server.

5.1 Using PATTY as a Thesaurus
PATTY connects the world of textual surface patterns

with the world of predefined RDF relationships. Users
who are aware of RDF-based knowledge bases can ex-
plore how RDF relations map to their textual representa-
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Relation Paraphrases Precision
DBPedia/artist [musical composition × musician] 83 0.96±0.03
DBPedia/associatedBand [musician × organization] 386 0.74±0.11
DBPedia/doctoralAdvisor [person × person] 36 0.558±0.15
DBPedia/recordLabel [musician × organization] 113 0.86±0.09
DBPedia/riverMouth [river × location] 31 0.83±0.12
DBPedia/team [athlete × team] 1,108 0.91±0.07
YAGO/actedIn [actor × movie ] 330 0.88±0.08
YAGO/created [entity × entity] 466 0.79±0.10
YAGO/isLeaderOf [person × organization] 40 0.53±0.14
YAGO/holdsPoliticalPosition [person × person] 72 0.73±0.10

Table 1: Relation Paraphrasing Precision for Sample DBPedia and YAGO Relations

tions. For example, as shown in Figure 2, PATTY knows
about 30 ways in which the DBPedia relation bandMem-
ber can be expressed textually. We hope that this wealth
of data can inspire new applications in information ex-
traction, QA, and text understanding.

Users do not need to be familiar with RDF in order to
use PATTY. For example, users can find different ways
to express the hasAcademicAdvisor relation, simply by
typing “worked under” into the search box. PATTY also
provides the text snippets where the mention was found
as a proof of provenance. These text snippets can be
explored to understand the context in which a pattern can
have a certain meaning. In addition, users can browse
the different meanings of patterns, as they occur with
different types of entities.

5.2 Schema-Agnostic Search
Internally, PATTY stores all extracted patterns with

their support sets. This allows users to search for facts in
the database. For this purpose, the PATTY front-end pro-
vides a search interface where the user can enter Subject-
Predicate-Object triples. Different from existing systems,
the user does not have to know the schema of the database
(i.e., the relations of the fact triples). It is fully sufficient
to enter natural language keywords. For example, to find
the co-stars of Brad Pitt, the user can type “costarred
with” in place of the relation. PATTY will then search
not only for the exact words “costarred with” but also
automatically use the paraphrases “appeared with”, “cast
opposite”, and “starred alongside”. This way the query
needs to be issued only once and the user does not need
to enter multiple paraphrases. For each result, PATTY
can show the textual sources from which it was derived.

The type signatures of the patterns can be used to
narrow down the search results according to different se-
mantic types. For example, when searching for a popular
subject like Barack Obama or Albert Einstein, the result
may span multiple pages. If the user is interested in only
one particular aspect of the entity, then the domain of
the subject can be semantically restricted. For example,

to see what PATTY knows about Albert Einstein in his
role as a scientist, the user can restrict the domain of
the relation to scientist. Such a query returns Einstein’s
teaching positions, his co-authors, information about his
theories, etc.; but it does not return information about his
wives or political activities.

These schema-agnostic queries can be extended to
simple join queries. This works by filling out multiple
triples and linking them with variables, similar to the way
SPARQL operates. Different from SPARQL, our system
does not require the user to know the relation name or the
entity names. For example, to find visionaries affiliated
with MIT, it is sufficient to type: ?x vision ?y, ?x ?z MIT.
This will search for people ?x who have a vision ?y and
who stand in some relationship ?z with an entity with
name MIT. These returns figures like Vannevar Bush
(The Endless Frontier vision) and Tim Berners-Lee (Web
vision).

5.3 Explaining Relatedness
PATTY can also be used to discover relationships be-

tween entities [5]. For example, if the user wishes to
know how Tom Cruise and Nicole Kidman are related,
it is sufficient to type “Nicole Kidman” into the subject
box and “Tom Cruise” into the object box. PATTY will
then retrieve all semantic relationships between the two,
together with the patterns in which this relationship is
expressed. For each result, users can click on the source
button discover provenance.

This principle can be extended to full conjunctive
queries. For example, to find the entity that links Na-
talie Portman and Mila Kunis, the user can type: Natalie
Portman ?r ?x, Mila Kunis ?s ?x. This will find all
entities ?x that link the two actresses, as well as an ex-
planation of how this entity establishes the link. In the
example, PATTY finds the movie “Black Swan” for ?x,
and says that both actresses appeared in this movie. As
this example shows, PATTY has created an internal, se-
mantic representation of the input text documents, which
allows it to answer semi-structured queries. In addition,
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to generate semantic patterns, PATTY has implicitly sum-
marized the input text documents. Users can exploit and
query these summaries.

5.4 Other Use Cases
Recently, followup work has shown successful usage

of PATTY for other tasks. In [9], PATTY ’s type signa-
tures are used for semantic typing of out-of-knowledge-
base entities. Because the type signatures are fined-
grained (e.g., musician, journalist, etc.), the application
infers more semantically informative types than standard
named entity recognition which works with coarse types
such as company, person, etc. In [16], PATTY’s relation
paraphrases are used for question understanding in the
challenging task of question answering.

6. RELATED WORK
Recently, [8] and [17] have addressed the mining of

equivalent patterns, in order to discover new relations,
based on clustering. These approaches are based on
building large matrices or inference on latent models.
They differ from PATTY in that the issue of identifying
subsumptions between patterns has been disregarded.
Among prior works, only ReVerb[4] and NELL[3], have
made their patterns publicly available. However, the
ReVerb patterns for Open IE are fairly noisy and connect
noun phrases rather than entities. NELL is limited to a
few hundred pre-specified relations. None of the prior
approaches knows the ontological types of patterns, to
reveal, e.g., that covered holds between a musician and a
song.

7. FUTURE WORK
There are several avenues for future research that can

build on and improve PATTY. We focused on two types
of relatedness: synonymy and hypernymy. However, fur-
ther types of relatedness between binary relations can be
extracted. For example, we can also extract antonyms,
where one relation is the opposite of another. Some rela-
tions have units; so we could extract the units of relations
such as hasHeight, hasRevenue, hasLength (for songs),
etc. In addition, some relations have value constraints,
for example, it is not possible for a person’s height to be
5 meters. Another line of future work is extracting n-ary
relations for n > 2. Such relations might be better suited
for explaining complex events and causality.
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