
CTPs: Contextual Temporal Profiles for Time Scoping Facts using
State Change Detection

Derry Tanti Wijaya
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213

dwijaya@cs.cmu.edu

Ndapandula Nakashole
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213
ndapa@cs.cmu.edu

Tom M. Mitchell
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213

tom.mitchell@cs.cmu.edu

Abstract

Temporal scope adds a time dimension to
facts in Knowledge Bases (KBs). These
time scopes specify the time periods when
a given fact was valid in real life. With-
out temporal scope, many facts are under-
specified, reducing the usefulness of the
data for upper level applications such as
Question Answering. Existing methods
for temporal scope inference and extrac-
tion still suffer from low accuracy. In this
paper, we present a new method that lever-
ages temporal profiles augmented with
context— Contextual Temporal Profiles
(CTPs) of entities. Through change pat-
terns in an entity’s CTP, we model the en-
tity’s state change brought about by real
world events that happen to the entity (e.g,
hired, fired, divorced, etc.). This leads to
a new formulation of the temporal scoping
problem as a state change detection prob-
lem. Our experiments show that this for-
mulation of the problem, and the resulting
solution are highly effective for inferring
temporal scope of facts.

1 Introduction

Recent years have seen the emergence of large
Knowledge Bases (KBs) of facts (Carlson 2010;
Auer 2007; Bollacker 2008; Suchanek 2007).
While the wealth of accumulated facts is huge,
most KBs are still sparsely populated in terms of
temporal scope. Time information is an important
dimension in KBs because knowledge is not static,
it changes over time: people get divorced; coun-
tries elect new leaders; and athletes change teams.
This means that facts are not always indefinitely
true. Therefore, temporal scope has crucial impli-
cations for KB accuracy.

Figure 1: Behavior patterns of context uni-grams
for the US presidency state change as seen in the
Google Books N-grams corpus: the rise of ‘elect’,
immediately followed by the rise of ‘administra-
tion’ and ‘president’.

Towards bridging the time gap in KBs, we
propose a new method for temporal scope infer-
ence. Our method is based on leveraging aggre-
gate statistics from a time-stamped corpus. First
we generate Contextual Temporal Profiles (CTPs)
of entities from contexts surrounding mentions of
these entities in the corpus. We then detect change
patterns in the CTPs. We then use these changes
to determine when a given entity undergoes a spe-
cific state change caused by real world events. Our
main insight is as follows: events that happen to
an entity change the entity’s state and therefore its
facts. Thus by learning when a given entity under-
goes a specific state change, we can directly infer
the time scopes of its facts. For example, in the di-
vorce event, the person’s state changes from ‘mar-
ried’ to ‘divorced’ hence the hasSpouse relation
no longer applies to it, signaling the end time of
its current hasSpouse value. In a country election
event, the country’s state changes and it obtains a
new value for its hasPresident relation.



Our method involves learning context units
(uni-grams and bi-grams surrounding mentions of
an entity) that are relevant to a given state change.
For this we use a few seed examples of entities that
have gone through the state change. For example,
for the US presidency state change denoting the
beginning of a US presidency, given seed exam-
ples such as (Richard Nixon, 1969) and (Jimmy
Carter, 1977), relevant context units include uni-
grams such as ‘administration’ and ‘elect’, which
are common to both CTPs in 1969 and 1977 re-
spectively. Secondly, we learn the mention behav-
ior of these context units for an entity undergoing
a given state change (section 3 has more details).
Figure 1 shows a motivating example, we see the
behavior patterns of context uni-grams for the US
presidency state change: the rise of ‘elect’ at the
beginning of presidencies, immediately followed
by the rise of ‘administration’ and ‘president’ in
the context of the entities, Nixon and Carter.

2 Related work

Prior work mainly falls into two categories: i)
methods that extract temporal scope from text,
at the time of fact extraction; ii) methods that
infer temporal scope from aggregate statistics in
large Web corpora. Early methods mostly fall
under category i); Timely YAGO (Wang 2010),
TIE (Ling 2010), and PRAVDA (Wang 2011) are
three such methods. Timely YAGO applies regu-
lar expressions to Wikipedia infoboxes to extract
time scopes. It is therefore not applicable to any
other corpora but Wikipedia. The TIE (Ling 2010)
system produces a maximal set of events and their
temporal relations based on the text of a given sen-
tence. PRAVDA uses textual patterns along with
a graph-based re-ranking method. Methods falling
under category i) have the downside that it is un-
clear how they can be applied to facts that are al-
ready in the knowledge base. Only one other ap-
proach learned time scopes from aggregate cor-
pus statistics, a recent system called CoTS (Taluk-
dar 2012b). CoTS uses temporal profiles of facts
and how the mentions of such facts rise and fall
over time. However, CoTS is based on frequency
counts of fact mentions and does not take into ac-
count state change inducing context. For exam-
ple, to find the time scope of Nixon presidency,
CoTS uses the rise and fall of the mention ’nixon’
and ’president’ over time. To improve accuracy,

CoTS combined this frequency signal with manu-
ally supplied constraints such as the functionality
of the US presidency relation to scope the begin-
ning and end of Nixon presidency. In contrast, the
proposed system does not require constraints as in-
put.

There have also been tools and competitions
developed to facilitate temporal scope extraction.
TARSQI (Verhagen 2005) is a tool for automat-
ically annotating time expressions in text. The
TempEval (Verhagen 2007) challenge has led to
a number of works on temporal relation extrac-
tion (Puscasu 2007; Yoshikawa 2009; Bethard
2007).

3 Method

Given an entity and its Contextual Temporal Pro-
file (CTP), we can learn when such an entity un-
dergoes a specific state change. We can then di-
rectly infer the begin or end time of the fact asso-
ciated with the state change.

The CTP of an entity at a given time point t con-
tains the context within which the entity is men-
tioned at that time. Our method is based on two
related insights: i) the context of the entity at time
t reflects the events happening to the entity and
the state of the entity at time t. ii) the differ-
ence in context before, at time t − 1, and after, at
time t, reflect the associated state change at time
t. However an entity can undergo a multiplicity of
changes at the same time. Thus both the contexts
and the differences in contexts can contain infor-
mation pertaining to several state changes. We
therefore need a way of determining which part
of the context is relevant to a given state change
sci. To this end, we generate what we refer to as
an aggregate state vector, V s(e, sci) for a hypo-
thetical average entity e undergoing state change
sci. We generate V s(e, sci) from the CTPs of a
seed set of entities at the time they undergo state
change sci.

3.1 Learning State and State Change Vectors

To build CTPs for entities, we use two time-
stamped corpora: the Google Books Ngram cor-
pus (Michel 2011); and the English Gigaword
(Graff 2003) corpus. The Google Books Ngram
corpus contains n-grams for n = 1−5; along with
occurrence statistics from over about 5 million
digitized books. The English Gigaword (Graff



2003) corpus contains newswire text from 1994-
2008. From these corpora, we use the time granu-
larity of a year as it is the finest granularity com-
mon to both corpora.

Definition 1 (Contextual Temporal Profile)
The Contextual Temporal Profile (CTP) of an
entity e at time t, Ce(t), consists of the context
within which e is mentioned. Specifically Ce(t)

consists of uni-grams and bi-grams generated
from the 5-grams(Google Books Ngram) or
sentences (Gigaword) that mention e at time t.

Notice that the CTPs can contain context units
(bi-grams or uni-grams) that are simply noise. To
filter the noise, we compute tf-idf statistics for
each contextual unit and only retain the top k rank-
ing units in Ce(t). In our experiments, we used
k = 100. We compute tf-idf by treating each time
unit t as a document containing words that occur
in the context of e (Wijaya 2011).

Furthermore, CTPs may contain context units
attributed to several state changes. We therefore
tease apart the CTPs to isolate contexts specific
to a given state change. For this, our method
takes as input a small set of seed entities, S(sci),
for each type of state change. Thus for the US
presidency state change that denotes the begin-
ning of a US presidency, we would have seeds as
follows: (Richard Nixon, 1969), (Jimmy Carter,
1977). From the CTPs of the seeds for state
change sci, we generate an aggregate state vector,
V s(e, sci). To obtain the few dozen seeds required
by our method, one can leverage semi-structured
sources such as Wikipedia infoboxes, where rela-
tions e.g., spouse often have time information.

Definition 2 ( Aggregate State Vector for e)
The aggregate state vector of a mean entity
e for state change sci, V s(e, sci), is made
up of the contextual units from the CTPs of
entities in the seed set S(sci) that undergo
state change sci. Thus, we have: V s(e, sci) =

1
|S(sci)|

∑
e,t:(e,t)∈S(sci)Ce(t).

Thus, the state vector V s(e, sci) reflects events
happening to e and the state of e at the time it
undergoes the state change sci. Additionally, we
compute another type of aggregate vector, aggre-
gate change vector 4V s(e, sci) to capture the
change patterns in the context units of e. Recall
that context units rise or fall due to state change,
as seen earlier in Figure 1.

Definition 3 ( Aggregate Change Vector for e)
The aggregate change vector of a mean entity e

for state change sci, 4V s(e, sci), is made up of
the change in the contextual units of the CTPs
of entities in the seed set S(sci) that undergo
state change sci. Thus, we have: 4V s(e, sci) =

1
|S(sci)|

∑
e,t:(e,t)∈S(sci)Ce(t)− Ce(t− 1).

The aggregate state vector V s(e, sci) and the
aggregate change vector 4V s(e, sci) are then
used to detect state changes.

3.2 Detecting State Changes

To detect state changes in a previously unseen en-
tity enew, we generate its state vector, Cenew(t),
and its change vector, 4Cenew(t) = Cenew(t) -
Cenew(t − 1), for every time point t. We consider
every time point t in the CTP of the new entity to
be a candidate for a given state change sci, which
we seek to determine whether enew goes through
and at which time point. We then compare the
state vector and change vector of every candidate
time point t to the aggregate state and aggregate
change vector of state change sci. We use cosine
similarity to measure similarities between the state
vector and the aggregate state vector and between
the change vector and the aggregate change vector.
To combine these two vector similarities, we sum
the state vector and change vector similarities. In
future we can explore cross validation and a sepa-
rate development set to define a weighted sum for
combining these two similarities.

The highest ranking candidate time point (most
similar to the aggregate state and aggregate change
vector) is then considered to be the start of state
change sci for the new entity enew.

4 Experiments

We carried out experiments to answer the fol-
lowing questions: Is treating temporal scoping
as state change detection in Contextual Temporal
Profiles(CTPs) effective? Do CTPs help improve
temporal scope extraction over context-unaware
temporal profiles?

4.1 Methods under Comparison

We answer these questions by comparing to the
following methods.

1. CoTS a state-of-the-art temporal scoping
system (Talukdar 2012b)



2. MaxEnt a baseline to which CoTS was com-
pared. It is a Maximum Entropy classifier
trained separately for each relation using nor-
malized counts and gradients of facts as fea-
tures. An Integer Linear Program (ILP) is
used to predict which facts are active at which
times. This is done based on the output of
the MAXENT classifier together with tem-
poral intra-relation constraints that regulate
the temporal scoping of one or more fac-
sts from a single relation (e.g., FUNCTIONAL

constraints on US President relation that reg-
ulate that at most one fact from the relation
can be true at any given time i.e., there is only
one US President at any given time).

3. MaxEnt + Intra Relation Constraints
MaxEnt with cross relation constraints
added: constraints that couple facts from
multiple relations e.g., a constraint that Al
Gore’s vice presidency is aligned exactly
with Bill Clinton’s presidency.

We evaluate on the same set of facts as CoTS
and its baselines: facts from the US Administra-
tion domain ( US President, US Vice President,
and US Secretary of State); and facts from the
Academy Awards domain (Best Director and Best
Picture). The number of facts per relation are as
follows: US President, 9; US Vice President, 12;
US Secretary of State, 13; Best Director, 14; and
Best Picture, 14. Our method however is not spe-
cific to these relations from these two domains.
Since our method does not depend on temporal
constraints, the method can work a very different
domain, for example one where many facts can ex-
ist for any time span without being superseded by
another, as long as the entities involved experience
a change of state. Thus, it can be applied to re-
lations like spouse, even though many people are
married in a year as these people change state from
single or engaged to married.

Similar to CoTS, the datasets from which the
CTPs were generated are as follows: The Google
Books Ngram (1960-2008) dataset (Michel 2011)
for the US Administration domain and the En-
glish Gigaword (1994-2008) dataset (Graff 2003)
for Academy Award domain.

Figure 2: Precision @ k using Contextual Tempo-
ral Profiles.

Figure 3: Comparison of F1 scores with CoTS and
other baselines.

4.2 CTPs Begin time precision

To compute precision we used cross validation,
in particular, leave-one-out cross validation due to
the small number of facts per relation.We predict
the begin time of each fact, the time the fact starts
to be valid. True begin times were determined by
a human annotator. This human annotated data
formed the gold-standard which we used to deter-
mine Precision (P), Recall (R), and the F1 mea-
sure. All evaluations were performed at the year
level, the finest granularity common to the two
time-stamped datasets.

For our first experiment, we report the aver-
age precision@k, where k=1 to n, where n=47 is
the number of years between 1960 to 2008 to se-
lect from. As can be seen in Figure 2, precision
quickly reaches 1 for most relations. The true be-
gin time is usually found within top k=5 results.



4.3 Comparison to baselines

For our second experiment, we compared to the F1
scores of CoTS and other baselines in (Talukdar
2012b). As can be seen in Figure 3, our CTPs ap-
proach gives comparable or better F1 (@k=1) than
systems that use only plain temporal profiles, even
when these systems are supplemented with many
carefully crafted, hand-specified constraints.

We note that the performance on the US Secre-
tary of State relation is low in both CoTS (Taluk-
dar 2012b) and in our approach. We found that this
was due to few documents mentioning the “sec-
retary of state” in Google Books Ngram dataset.
This leads to weak signals for predicting the tem-
poral scope of secretary of state appointments.

We also observe that the uni-grams and bi-
grams in the train CTPs and change vectors reflect
meaningful events and state changes happening to
the entities (Table 1). For example, after ‘becom-
ing president’ and ‘taking office’, US presidents
often see a drop in mentions of their previous (job
title state) such as ‘senator’, ‘governor’ or ‘vice
president’ as they gain the‘president’ state.

4.4 Discussion

Overall, our results show that our method is
promising for detecting begin time of facts. In its
current state, our method performs poorly on in-
ferring end times as contexts relevant to a fact of-
ten still mentioned with the entity even after the
fact ceases to be valid. For example, the entity
Al Gore is still mentioned a lot with the bi-gram
‘vice president’ even after he is no longer a vice
president. Prior work, CoTS, inferred end times
by leveraging manually specified constraints, e.g.,
that there can only be one vice president at a time:
the beginning of one signals the end of another
(Talukdar 2012b). However such methods do not
scale due to the amount of constraints that must be
hand-specified. In future, we would like to inves-
tigate how to better detect the end times of facts.

5 Conclusion

This paper presented a new approach for inferring
temporal scopes of facts. Our approach is to re-
formulate temporal scoping as a state change de-
tection problem. To this end, we introduced Con-
textual Temporal Profiles (CTPs) which are entity
temporal profiles enriched with relevant context.

Relation CTP State
Context

Unigrams and Bigrams
in CTP Change Vectors

US President was
elected,
took office,
became
president

vice president (-), by
president (+), adminis-
tration (+), senator (-),
governor (-), candidate
(-)

Best Picture nominated
for, to
win, won
the, was
nominated

best picture (+), hour
minute (-), academy
award (+), oscar (+),
nominated (+), won (+),
star (-), best actress (+),
best actor (+), best sup-
porting (+)

Table 1: Example behavior of various contex-
tual units (unigrams and bigrams) automatically
learned in the train CTPs and change vector. The
(+) and (-) signs indicate rise and fall in mention
frequency, respectively.

From the CTPs, we learned change vectors that re-
flect change patterns in context units of CTPs. Our
experiments showed that the change patterns are
highly relevant for detecting state change, which
is an effective way of identifying begin times of
facts. For future work, we would like to investi-
gate how our method can be improved to dp better
at detecting fact end times. We also would like to
investigate time-stamped corpora of finer-grained
granularity such as day. This information can be
obtained by subscribing to daily newsfeeds of spe-
cific entities.
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