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Abstract

Prepositional phrases (PPs) express cru-
cial information that knowledge base con-
struction methods need to extract. How-
ever, PPs are a major source of syntactic
ambiguity and still pose problems in pars-
ing. We present a method for resolving
ambiguities arising from PPs, making ex-
tensive use of semantic knowledge from
various resources. As training data, we use
both labeled and unlabeled data, utilizing
an expectation maximization algorithm for
parameter estimation. Experiments show
that our method yields improvements over
existing methods including a state of the
art dependency parser.

1 Introduction

Machine reading and information extraction (IE)
projects have produced large resources with many
millions of facts (Suchanek et al., 2007; Mitchell
et al., 2015). This wealth of knowledge creates
a positive feedback loop for automatic knowledge
base construction efforts: the accumulated knowl-
edge can be leveraged to improve machine read-
ing; in turn, improved reading methods can be
used to better extract knowledge expressed using
complex and potentially ambiguous language. For
example, prepositional phrases (PPs) express cru-
cial information that IE methods need to extract.
However, PPs are a major source of syntactic am-
biguity. In this paper, we propose to use semantic
knowledge to improve PP attachment disambigua-
tion. PPs such as “in”, “at”, and “for” express de-
tails about the where, when, and why of relations
and events. PPs also state attributes of nouns.

As an example, consider the following sen-
tences: S1.) Alice caught the butterfly with the
spots. S2.) Alice caught the butterfly with the net.
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Figure 1: Parse trees where the prepositional
phrase (PP) attaches to the noun, and to the verb.

Relations Noun-Noun binary relations
(Paris, located in, France)
(net, caught, butterfly)

Nouns Noun semantic categories
(butterfly, isA, animal)

Verbs Verb roles
caught(agent, patient, instrument)

Prepositions Preposition definitions
f(for)= used for, has purpose, ...
f(with)= has, contains, ...

Discourse Context
n0 ∈ {n0, v, n1, p, n2}

Table 1: Types of background knowledge used in
this paper to determine PP attachment.

S1 and S2 are syntactically different, this is evi-
dent from their corresponding parse trees in Fig-
ure 1. Specifically, S1 and S2 differ in where their
PPs attach. In S1, the butterfly has spots and there-
fore the PP, “with the spots”, attaches to the noun.
For relation extraction, we obtain a binary relation
of the form: 〈Alice〉 caught 〈butterfly with spots〉.
However, in S2, the net is the instrument used for
catching and therefore the PP, “with the net”, at-
taches to the verb. For relation extraction, we get
a ternary extraction of the form: 〈Alice〉 caught
〈butterfly〉 with 〈net〉.

The PP attachment problem is often defined as
follows: given a PP occurring within a sentence
where there are multiple possible attachment sites
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Figure 2: Dependency parser PP attachment accu-
racy for various frequent prepositions.

for the PP, choose the most plausible attachment
site. In the literature, prior work going as far back
as (Brill and Resnik, 1994; Ratnaparkhi et al.,
1994; Collins and Brooks, 1995) has focused on
the language pattern that causes most PP ambigui-
ties, which is the 4-word sequence: {v, n1, p, n2}
(e.g., {caught, butterfly, with, spots}). The task is
to determine if the prepositional phrase (p, n2) at-
taches to the verb v or to the first noun n1. Follow-
ing common practice, we focus on PPs occurring
as {v, n1, p, n2} quadruples — we shall refer to
these as PP quads.

The approach we present here differs from prior
work in two main ways. First, we make ex-
tensive use of semantic knowledge about nouns,
verbs, prepositions, pairs of nouns, and the dis-
course context in which a PP quad occurs. Table 1
summarizes the types of knowledge we considered
in our work. Second, in training our model, we
rely on both labeled and unlabeled data, employ-
ing an expectation maximization (EM) algorithm
(Dempster et al., 1977).
Contributions. In summary, our main contribu-
tions are:

1) Semantic Knowledge: Previous methods
largely rely on corpus statistics. Our approach
draws upon diverse sources of background knowl-
edge, leading to performance improvements.

2) Unlabeled Data: In addition to training on la-
beled data, we also make use of a large amount of
unlabeled data. This enhances our method’s abil-
ity to generalize to diverse data sets.

3) Datasets: In addition to the standard Wall
Street Journal corpus (WSJ) (Ratnaparkhi et al.,
1994), we labeled two new datasets for testing
purposes, one from Wikipedia (WKP), and an-
other from the New York Times Corpus (NYTC).
We make these datasets freely available for fu-

0

0.25

0.5

0.75

1

IN FROM WITH FOR OF As AT ON

Verb attachments
Noun attachments

Figure 3: Noun vs. verb attachment proportions
for frequent prepositions in the labeled NYTC
dataset.

ture research. In addition, we have applied our
model to over 4 million 5-tuples of the form
{n0, v, n1, p, n2}, and we also make this dataset
available1 for research into ternary relation extrac-
tion beyond spatial and temporal scoping.

2 State of the Art

To quantitatively assess existing tools, we ana-
lyzed performance of the widely used Stanford
parser2 as of 2014, and the established baseline
algorithm (Collins and Brooks, 1995), which has
stood the test of time. We first manually labeled
PP quads from the NYTC dataset, then prepended
the noun phrase appearing before the quad, ef-
fectively creating sentences made up of 5 lexi-
cal items (n0 v n1 p n2). We then applied the
Stanford parser, obtaining the results summarized
in Figure 2. The parser performs well on some
prepositions, for example, “of”, which tends to oc-
cur with noun attaching PPs as can be seen in Fig-
ure 3. However, for prepositions with an even dis-
tribution over verb and noun attachments, such as
“on”, precision is as low as 50%. The Collins
baseline achieves 84% accuracy on the bench-
mark Wall Street Journal PP dataset. However,
drawing a distinction in the precision of different
prepositions provides useful insights on its per-
formance. We re-implemented this baseline and
found that when we remove the trivial preposi-
tion, “of”, whose PPs are by default attached to
the noun by this baseline, precision drops to 78%.
This analysis suggests there is substantial room for
improvement.

1http://rtw.ml.cmu.edu/resources/ppa
2http://nlp.stanford.edu:8080/parser/



3 Related Work

Statistics-based Methods. Prominent prior meth-
ods learn to perform PP attachment based on
corpus co-occurrence statistics, gathered either
from manually annotated training data (Collins
and Brooks, 1995; Brill and Resnik, 1994) or
from automatically acquired training data that may
be noisy (Ratnaparkhi, 1998; Pantel and Lin,
2000). These models collect statistics on how of-
ten a given quadruple, {v, n1, p, n2}, occurs in the
training data as a verb attachment as opposed to a
noun attachment. The issue with this approach is
sparsity, that is, many quadruples occuring in the
test data might not have been seen in the training
data. Smoothing techniques are often employed
to overcome sparsity. For example, (Collins and
Brooks, 1995) proposed a back-off model that uses
subsets of the words in the quadruple, by also
keeping frequency counts of triples, pairs and sin-
gle words. Another approach to overcoming spar-
sity has been to use WordNet (Fellbaum, 1998)
classes, by replacing nouns with their WordNet
classes (Stetina and Nagao, 1997; Toutanova et
al., 2004) to obtain less sparse corpus statistics.
Corpus-derived clusters of similar nouns and verbs
have also been used (Pantel and Lin, 2000).

Hindle and Rooth proposed a lexical associa-
tion approach based on how words are associated
with each other (Hindle and Rooth, 1993). Lexi-
cal preference is used by computing co-occurrence
frequencies (lexical associations) of verbs and
nouns, with prepositions. In this manner, they
would discover that, for example, the verb “send”
is highly associated with the preposition from, in-
dicating that in this case, the PP is likely to be a
verb attachment.
Structure-based Methods. These methods are
based on high-level observations that are then gen-
eralized into heuristics for PP attachment deci-
sions. (Kimball, 1988) proposed a right associa-
tion method, whose premise is that a word tends
to attach to another word immediately to its right.
(Frazier, 1978) introduced a minimal attachment
method, which posits that words attach to an ex-
isting non-terminal word using the fewest addi-
tional syntactic nodes. While simple, in practice
these methods have been found to perform poorly
(Whittemore et al., 1990).
Rule-based Methods. (Brill and Resnik, 1994)

proposed methods that learn a set of transforma-
tion rules from a corpus. The rules can be too spe-
cific to have broad applicability, resulting in low
recall. To address low recall, knowledge about
nouns, as found in WordNet, is used to replace cer-
tain words in rules with their WordNet classes.
Parser Correction Methods. The quadruples for-
mulation of the PP problem can be seen as a
simplified setting. This is because, with quadru-
ples, there is no need to deal with complex sen-
tences but only well-defined quadruples of the
form {v, n1, p, n2}. Thus in the quadruples set-
ting, there are only two possible attachment sites
for the PP, the v and n1. An alternative setting is
to work in the context of full sentences. In this
setting the problem is cast as a dependency parser
correction problem (Atterer and Schütze, 2007;
Agirre et al., 2008; Anguiano and Candito, 2011).
That is, given a dependency parse of a sentence,
with potentially incorrect PP attachments, rectify
it such that the prepositional phrases attach to the
correct sites. Unlike our approach, these methods
do not take semantic knowledge into account.
Sense Disambiguation. In addition to prior work
on prepositional phrase attachment, a highly re-
lated problem is preposition sense disambiguation
(Hovy et al., 2011; Srikumar and Roth, 2013).
Even a syntactically correctly attached PP can still
be semantically ambiguous with respect to ques-
tions of machine reading such as where, when, and
why. Therefore, when extracting information from
prepositions, the problem of preposition sense dis-
ambiguation (semantics) has to be addressed in ad-
dition to prepositional phrase attachment disam-
biguation (syntax). In this paper, our focus is on
the latter.

4 Methodology

Our approach consists of first generating features
from background knowledge and then training a
model to learn with these features. The types of
features considered in our experiments are sum-
marized in Table 2. The choice of features was
motivated by our empirically driven characteriza-
tion of the problem as follows:

(Verb attach) −→ v 〈has-slot-filler〉 n2
(Noun attach a.) −→ n1 〈described-by〉 n2
(Noun attach b.) −→ n2 〈described-by〉 n1



Feature Type # Feature Example
Noun-Noun Binary Relations Source: SVOs

F1. svo(n2, v, n1) For q1; (net, caught, butterfly)
F2. ∀i : ∃svio; svo(n1, vi, n2) For q2; (butterfly, has, spots)

For q2; (butterfly, can see, spots)
Noun Semantic Categories Source: T

F3. ∀ti ∈ T ; isA(n1, ti) For q1 isA(butterlfy, animal)
F4. ∀ti ∈ T ; isA(n2, ti) For q2 isA(net, device)

Verb Role Fillers Source: VerbNet
F5. hasRole(n2, ri) For q1; (net, instrument)

Preposition Relational Source:M
Definitions F6. def(prep, vi) ∀i :

∃svio; vi ∈M ∧
svo(n1, vi, n2) For q2; def(with, has)

Discourse Features Source: Sentence(s), T
F7. ∀ti ∈ T ; isA(n0, ti) n0 ∈ {n0, v, n1, p, n2}

Lexical Features Source: PP quads For q1;
F8. (v, n1, p, n2) (caught, butterfly, with, net)

F9. (v, n1, p) (caught, butterfly, with)

F10. (v, p, n2) (caught, with, net)

F11. (n1, p, n2) (butterfly, with, net)

F12. (v, p) (caught, with)

F13. (n1, p) (butterfly, with)

F14. (p, n2) (with, net)

F15. (p) (with)

Table 2: Types of features considered in our experiments. All features have values of 1 or 0.
The PP quads used as running examples are: q1 = {caught, butterfly, with, net} : V , q2 =

{caught, butterfly, with, spots} : N .

That is, we found that for verb-attaching PPs,
n2 is usually a role filler for the verb, e.g., the net
fills the role of an instrument for the verb catch.
On the other hand, for noun-attaching PPs, one
noun describes or elaborates on the other. In par-
ticular, we found two kinds of noun attachments.
For the first kind of noun attachment, the second
noun n2 describes the first noun n1, for exam-
ple n2 might be an attribute or property of n1,
as in the spots(n2) are an attribute of the butter-
fly (n1). And for the second kind of noun attach-
ment, the first noun n1 describes the second noun
n2, as in the PP quad {expect, decline, in, rates},
where the PP “in rates”, attaches to the noun. The
decline:n1 that is expected:v is in the rates:n2. We
sampled 50 PP quads from the WSJ dataset and
found that every labeling could be explained using
our characterization. We make this labeling avail-
able with the rest of the datasets.

We next describe in more detail how each type

of feature is derived from the background knowl-
edge in Table 1.

4.1 Feature Generation

We generate boolean-valued features for all the
feature types we describe in this section.

4.1.1 Noun-Noun Binary Relations

The noun-noun binary relation features, F1-2
in Table 2, are boolean features svo(n1, vi, n2)
(where vi is any verb) and svo(n2, v, n1) (where
v is the verb in the PP quad, and the roles of
n2 and n1 are reversed). These features de-
scribe diverse semantic relations between pairs of
nouns (e.g., butterfly-has-spots, clapton-played-
guitar). To obtain this type of knowledge, we
dependency parsed all sentences in the 500 mil-
lion English web pages of the ClueWeb09 corpus,
then extracted subject-verb-object (SVO) triples
from these parses, along with the frequency of



each SVO triple in the corpus. The value of
any given feature svo(n1, vi, n2) is defined to be
1 if that SVO triple was found at least 3 times
in these SVO triples, and 0 otherwise. To see
why these relations are relevant, let us suppose
that we have the knowledge that butterfly-has-
spots, svo(n1, vi, n2). From this, we can infer
that the PP in {caught, butterfly, with, spots}
is likely to attach to the noun. Similarly, suppose
we know that net-caught-butterfly, svo(n2, v, n1).
The fact that a net can be used to catch a but-
terfly can be used to predict that the PP in
{caught, butterfly, with, net} is likely to attach
to the verb.

4.1.2 Noun Semantic Categories

Noun semantic type features, F3-4, are boolean
features isA(n1, ti) and isA(n2, ti) where ti is a
noun category in a noun categorization scheme T
such as WordNet classes. Knowledge about se-
mantic types of nouns, for example that a butter-
fly is an animal, enables extrapolating predictions
to other PP quads that contain nouns of the same
type. We ran experiments with several noun cat-
egorizations including WordNet classes, knowl-
edge base ontological types, and an unsupervised
noun categorization produced by clustering nouns
based on the verbs and adjectives with which they
co-occur (distributional similarity).

4.1.3 Verb Role Fillers

The verb role feature, F5, is a boolean fea-
ture hasRole(n2, ri) where ri is a role that
n2 can fulfill for the verb v in the PP quad,
according to background knowledge. Notice
that if n2 fills a role for the verb, then the
PP is a verb attachment. Consider the quad
{caught, butterfly, with, net}, if we know that
a net can play the role of an instrument for the
verb catch, this suggests a likely verb attachment.
We obtained background knowledge of verbs and
their possible roles from the VerbNet lexical re-
source (Kipper et al., 2008). From VerbNet we
obtained 2, 573 labeled sentences containing PP
quads (verbs in the same VerbNet group are con-
sidered synonymous), and the labeled semantic
roles filled by the second noun n2 in the PP quad.
We use these example sentences to label similar
PP quads, where similarity of PP quads is defined
by verbs from the same VerbNet group.

4.1.4 Preposition Definitions
The preposition definition feature, F6, is a
boolean feature def(prep, vi) = 1 if ∃vi ∈
M ∧ svo(n1, vi, n2) = 1, where M is a def-
inition mapping of prepositions to verb phrases.
This mapping defines prepositions, using verbs
in our ClueWeb09 derived SVO corpus, in or-
der to capture their senses using verbs; it con-
tains definitions such as def(with, *) = contains,
accompanied by, ... . If “with” is used in the
sense of “contains” , then the PP is a likely
noun attachment, as in n1 contains n2 in the
quad ate, cookies, with, cranberries. However,
if “with” is used in the sense of “accompanied
by”, then the PP is a likely verb attachment, as
in the quad visted, Paris, with, Sue. To obtain
the mapping, we took the labeled PP quads (WSJ,
(Ratnaparkhi et al., 1994)) and computed a ranked
list of verbs from SVOs, that appear frequently
between pairs of nouns for a given preposition.
Other sample mappings are: def(for,*)= used for,
def(in,*)= located in. Notice that this feature F6
is a selective, more targeted version of F2.

4.1.5 Discourse and Lexical Features
The discourse feature, F7, is a boolean feature
isA(n0, ti), for each noun category ti found in a
noun category ontology T such as WordNet se-
mantic types. The context of the PP quad can
contain relevant information for attachment deci-
sions. We take into account the noun preceding
a PP quad, in particular, its semantic type. This
in effect makes the PP quad into a PP 5-tuple:
{n0, v, n1, p, n2}, where the n0 provides addi-
tional context.

Finally, we use lexical features in the form of
PP quads, features F8-15. To overcome sparsity
of occurrences of PP quads, we also use counts
of shorter sub-sequences, including triples, pairs
and singles. We only use sub-sequences that con-
tain the preposition, as the preposition has been
found to be highly crucial in PP attachment deci-
sions (Collins and Brooks, 1995).

4.2 Disambiguation Algorithm

We use the described features to train a model
for making PP attachment decisions. Our goal
is to compute P(y|x), the probability that the PP
(p, n2) in the tuple {v, n1, p, n2} attaches to the
verb (v) , y = 1 or to the noun(n1), y = 0, given



a feature vector x describing that tuple. As input to
training the model, we are given a collection of PP
quads, D where di ∈ D : di = {v, n1, p, n2}. A
small subset,Dl ⊂ D is labeled data, thus for each
di ∈ Dl we know the corresponding yi. The rest
of the quads, Du, are unlabeled, hence their corre-
sponding yis are unknown. From each PP quad di,
we extract a feature vector xi according to the fea-
ture generation process discussed in Section 4.1.

4.2.1 Model
To model P(y|x), there a various possibilities.
One could use a generative model (e.g., Naive
Bayes) or a discriminative model ( e.g., logistic re-
gression). In our experiments we used both kinds
of models, but found the discriminative model per-
formed better. Therefore, we present details only
for our discriminative model. We use the logistic
function: P(y|x, ~θ) = e

~θx

1+e~θx
, where ~θ is a vec-

tor of model parameters. To estimate these pa-
rameters, we could use the labeled data as training
data and use standard gradient descent to minimize
the logistic regression cost function. However, we
also leverage the unlabeled data.

4.2.2 Parameter Estimation
To estimate model parameters based on both la-
beled and unlabeled data, we use an Expecta-
tion Maximization (EM) algorithm. EM estimates
model parameters that maximize the expected log
likelihood of the full (observed and unobserved)
data. Since we are using a discriminative model,
our likelihood function is a conditional likelihood
function:

L(θ) =
N∑
i=1

ln P(yi|xi)

=
N∑
i=1

yiθ
Txi − ln (1 + exp(θTxi)) (1)

where i indexes over the N training examples.
The EM algorithm produces parameter esti-

mates that correspond to a local maximum in
the expected log likelihood of the data under
the posterior distribution of the labels, given by:
argmax

θ
Ep(y|x,θ)[ln P(y|x, θ)]. In the E-step, we

use the current parameters θt−1 to compute the
posterior distribution over the y labels, give by
P(y|x, θt−1). We then use this posterior distri-
bution to find the expectation of the log of the

complete-data conditional likelihood, this expec-
tation is given by Q(θ, θt−1), defined as:

Q(θ, θt−1) =
N∑
i=1

Eθt−1 [ln P(y|x, θ)] (2)

In the M-step, a new estimate θt is then pro-
duced, by maximizing thisQ function with respect
to θ:

θt = argmax
θ
Q(θ, θt−1) (3)

EM iteratively computes parameters
θ0, θ1, ...θt, using the above update rule at
each iteration t, halting when there is no further
improvement in the value of the Q function. Our
algorithm is summarized in Algorithm 1. The
M-step solution for θt is obtained using gradient
ascent to maximize the Q function.

Algorithm 1 The EM algorithm for PP attachment
Input: X ,D = Dl ∪Du

Output: θT

for t = 1 . . . T do
E-Step:
Compute p(y|xi, θt−1)
xi : di ∈ Du; p(y|xi, ~θ) = e

~θx

1+e~θx

xi : di ∈ Dl; p(y|xi) = 1 if y = yi, else 0

M-Step:
Compute new parameters, θt

θt = argmax
θ
Q(θ, θt−1)

Q(θ, θt−1) =
N∑
i=1

∑
y∈{0,1}

p(y|xi, θt−1)×

(yθTxi − ln(1 + exp(θTxi)))

if convergence(L(θ),L(θt−1)) then
break

end if
end for
return θT

5 Experimental Evaluation

We evaluated our method on several datasets con-
taining PP quads of the form {v, n1, p, n2}. The
task is to predict if the PP (p, n2) attaches to the
verb v or to the first noun n1.

5.1 Experimental Setup

Datasets. Table 3 shows the datasets used in our
experiments. As labeled training data, we used the



DataSet # Training quads # Test quads
Labeled data

WSJ 20,801 3,097
NYTC 0 293
WKP 0 381

Unlabeled data
WKP 100,000 4,473,072

Table 3: Training and test datasets used in our ex-
periments.

PPAD PPAD- Coll- Stan-
NB ins ford

WKP 0.793 0.740 0.727 0.701
WKP 0.759 0.698 0.683 0.652
\of
NYTC 0.843 0.792 0.809 0.679
NYTC 0.815 0.754 0.774 0.621
\of
WSJ 0.843 0.816 0.841 N\A
WSJ 0.779 0.741 0.778 N\A
\of

Table 4: PPAD vs. baselines.

Wall Street Journal (WSJ) dataset. For the unla-
beled training data, we extracted PP quads from
Wikipedia (WKP) and randomly selected 100, 000

which we found to be a sufficient amount of un-
labeled data. The largest labeled test dataset is
WSJ but it is also made up of a large fraction, of
“of” PP quads, 30% , which trivially attach to the
noun, as already seen in Figure 3. The New York
Times (NYTC) and Wikipedia (WKP) datasets are
smaller but contain fewer proportions of “of” PP
quads, 15%, and 14%, respectively. Addition-
ally, we applied our model to over 4 million un-
labeled 5-tuples from Wikipedia. We make this
data available for download, along with our man-
ually labeled NYTC and WKP datasets. For the
WKP & NYTC corpora, each quad has a preced-
ing noun, n0, as context, resulting in PP 5-tuples
of the form: {n0, v, n1, p, n2}. The WSJ dataset
was only available to us in the form of PP quads
with no other sentence information.
Methods Under Comparison. 1) PPAD (Prepo-
sitional Phrase Attachment Disambiguator) is our
proposed method. It uses diverse types of seman-
tic knowledge, a mixture of labeled and unlabeled
data for training data, a logistic regression classi-

0.5
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0.9

WKP WKP\of NYTC NYTC\of WSJ WSJ\of

PPAD - WordNet Types PPAD - KB Types
PPAD - Unsupervised Types PPAD - WordNet Verbs
PPAD - Naive Bayes Collins Baseline
Stanford Parser

Figure 4: PPAD variations vs. baselines.

fier, and expectation maximization (EM) for pa-
rameter estimation 2) Collins is the established
baseline among PP attachment algorithms (Collins
and Brooks, 1995). 3) Stanford Parser is a state-
of-the-art dependency parser, the 2014 online ver-
sion. 4) PPAD Naive Bayes(NB) is the same as
PPAD but uses a generative model, as opposed to
the discriminative model used in PPAD.

5.2 PPAD vs. Baselines

Comparison results of our method to the three
baselines are shown in Table 4. For each dataset,
we also show results when the “of” quads are re-
moved, shown as “WKP\of”, “NYTC\of”, and
“WSJ\of”. Our method yields improvements over
the baselines. Improvements are especially sig-
nificant on the datasets for which no labeled data
was available (NYTC and WKP). On WKP, our
method is 7% and 9% ahead of the Collins base-
line and the Stanford parser, respectively. On
NYTC, our method is 4% and 6% ahead of the
Collins baseline and the Stanford parser, respec-
tively. On WSJ, which is the source of the labeled
data, our method is not significantly better than
the Collins baseline. We could not evaluate the
Stanford parser on the WSJ dataset. The parser re-
quires well-formed sentences which we could not
generate from the WSJ dataset as it was only avail-
able to us in the form of PP quads with no other
sentence information. For the same reason, we
could not generate discourse features,F7, for the
WSJ PP quads. For the NYTC and WKP datasets,
we generated well-formed short sentences con-
taining only the PP quad and the noun preceding
it.



Feature Type Precision Recall F1
Noun-Noun Binary Relations (F1-2) low high low

Noun Semantic Categories (F3-4) high high high
Verb Role Fillers (F5) high low low

Preposition Definitions (F6) low low low

Discourse Features (F7) high low high
Lexical Features (F8-15) high high high

Table 5: An approximate characterization of feature knowledge sources in terms of precision/recall/F1

5.3 Feature Analysis

We found that features F2 and F6 did not im-
prove performance, therefore we excluded them
from the final model, PPAD. This means that bi-
nary noun-noun relations were not useful when
used permissively, feature F2, but when used se-
lectively, feature F1, we found them to be useful.
Our attempt at mapping prepositions to verb def-
initions produced some noisy mappings, resulting
in feature F6 producing mixed results. To ana-
lyze the impact of the unlabeled data, we inspected
the features and their weights as produced by the
PPAD model. From the unlabeled data, new lex-
ical features were discovered that were not in the
original labeled data. Some sample new features
with high weights for verb attachments are: (per-
form,song,for,*), (lose,*,by,*), (buy,property,in,*).
And for noun attachments: (*,conference,on,*),
(obtain,degree,in,*), (abolish,taxes,on,*).

We evaluated several variations of PPAD, the
results are shown in Figure 4. For “PPAD-
WordNet Verbs”, we expanded the data by replac-
ing verbs in PP quads with synonymous WordNet
verbs, ignoring verb senses. This resulted in more
instances of features F1, F8-10, & F12.

We also used different types of noun categoriza-
tions: WordNet classes, semantic types from the
NELL knowledge base (Mitchell et al., 2015) and
unsupervised types. The KB types and the unsu-
pervised types did not perform well, possibly due
to the noise found in these categorizations. Word-
Net classes showed the best results, hence they
were used in the final PPAD model for features
F3-4 & F7. In Section 5.1, PPAD corresponds to
the best model.

5.4 Discussion: The F1 Score of Knowledge

Why did we not reach 100% accuracy? Should re-
lational knowledge not be providing a much big-
ger performance boost than we have seen in the re-

sults? To answer these questions, we characterize
our features in terms precision and recall, and F1
measure of their knowledge sources in Table 5. A
low recall feature means that the feature does not
fire on many examples, the feature’s knowledge
source suffers from low coverage. A low preci-
sion feature means that when it fires, the feature
could be incorrect, the feature’s knowledge source
contains a lot of errors.

From Table 5, the noun-noun binary relation
features (F1 − 2) have low precision, but high
recall. This is because the SVO data, extracted
from the ClueWeb09 corpus, that we used as our
relational knowledge source is very noisy but it is
high coverage. The low precision of the SVO data
causes these features to be detrimental to perfor-
mance. Notice that when we used a filtered ver-
sion of the data, in feature F2, the data was no
longer detrimental to performance. However, the
F2 feature is low recall, and therefore it’s impact
on performance is also limited. The noun seman-
tic category features (F3−4) have high recall and
precision, hence it to be expected that their im-
pact on performance is significant. The verb role
filler features (F5), obtained from VerbNet have
high precision but low recall, hence their marginal
impact on performance is also to be expected. The
preposition definition features (F6) poor precision
made them unusable. The discourse features (F7)
are based noun semantic types and lexical features
(F8−15), both of which have high recall and pre-
cision, hence they useful impact on performance.

In summary, low precision in knowledge is
detrimental to performance. In order for knowl-
edge to make even more significant contributions
to language understanding, high precision, high
recall knowledge sources are required for all fea-
tures types. Success in ongoing efforts in knowl-
edge base construction projects, will make perfor-
mance of our algorithm better.



Relation Prep. Attachment accuracy Example(s)
acquired from 99.97 BNY Mellon acquired Insight from Lloyds.
hasSpouse in 91.54 David married Victoria in Ireland.
worksFor as 99.98 Shubert joined CNN as reporter.
playsInstrument with 98.40 Kushner played guitar with rock band Weezer.

Table 6: Binary relations extended to ternary relations by mapping to verb-preposition pairs in PP 5-
tuples. PPAD predicted verb attachments with accuracy >90% in all relations.

5.5 Application to Ternary Relations

Through the application of ternary relation extrac-
tion, we further tested PPAD’s PP disambiguation
accuracy and illustrated its usefulness for knowl-
edge base population. Recall that a PP 5-tuple of
the form {n0, v, n1, p, n2}, whose enclosed PP at-
taches to the verb v, denotes a ternary relation with
arguments n0, n1, & n2. Therefore, we can extract
a ternary relation from every 5-tuple for which our
method predicts a verb attachment. If we have a
mapping between verbs and binary relations from
a knowledge base (KB), we can extend KB rela-
tions to ternary relations by augmenting the KB
relations with a third argument n2.

We considered four KB binary re-
lations and their instances such as
worksFor(TimCook,Apple), from the NELL
KB. We then took the collection of 4 million
5-tuples that we extracted from Wikipedia. We
mapped verbs in 5-tuples to KB relations, based
on significant overlaps in the instances of the KB
relations, noun pairs such as (TimCook,Apple)

with the n0, n1 pairs in the Wikipedia PP 5-tuple
collection. We found that, for example, instances
of the noun-noun KB relation “worksFor” match
n0, n1 pairs in tuples where v = joined and
p = as , with n2 referring to the job title. Other
binary relations extended are: “hasSpouse” ex-
tended by “in” with wedding location, “acquired”
extended by “from” with the seller of the company
being acquired. Examples are shown in Table
6. In all these mappings, the proportion of verb
attachments in the corresponding PP quads is
significantly high ( > 90%). PPAD is overwhelm-
ing making the right attachment decisions in this
setting.

Efforts in temporal and spatial relation extrac-
tion have shown that higher N-ary relation extrac-
tion is challenging. Since prepositions specify de-
tails that transform binary relations to higher N-

ary relations, our method can be used to read infor-
mation that can augment binary relations already
in KBs. As future work, we would like to incor-
porate our method into a pipeline for reading be-
yond binary relations. One possible direction is
to read details about the where,why, who of events
and relations, effectively moving from extracting
only binary relations to reading at a more general
level.

6 Conclusion

We have presented a knowledge-intensive ap-
proach to prepositional phrase (PP) attachment
disambiguation, which is a type of syntactic ambi-
guity. Our method incorporates knowledge about
verbs, nouns, discourse, and noun-noun binary re-
lations. We trained a model using labeled data and
unlabeled data, making use of expectation max-
imization for parameter estimation. Our method
can be seen as an example of tapping into a pos-
itive feedback loop for machine reading, which
has only become possible in recent years due to
the progress made by information extraction and
knowledge base construction techniques. That
is, using background knowledge from existing re-
sources to read better in order to further populate
knowledge bases with otherwise difficult to extract
knowledge. As future work, we would like to use
our method to extract more than just binary rela-
tions.
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Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary G. Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The Semantic Web, 6th International Semantic
Web Conference, 2nd Asian Semantic Web Confer-
ence, ISWC 2007 + ASWC 2007, Busan, Korea,
November 11-15, 2007., pages 722–735.

Michele Banko, Michael J Cafarella, Stephen Soder-
land, Matthew Broadhead, and Oren Etzioni. 2007.
Open information extraction for the web. In IJCAI,
volume 7, pages 2670–2676.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’08, pages 1247–1250.

Eric Brill and Philip Resnik. 1994. A rule-based
approach to prepositional phrase attachment disam-
biguation. In 15th International Conference on
Computational Linguistics, COLING, pages 1198–
1204.

Andrew Carlson, Justin Betteridge, Richard C. Wang,
Estevam R. Hruschka, Jr., and Tom M. Mitchell.
2010. Coupled semi-supervised learning for infor-
mation extraction. In Proceedings of the Third ACM
International Conference on Web Search and Data
Mining, WSDM ’10, pages 101–110.

Michael Collins and James Brooks. 1995. Prepo-
sitional phrase attachment through a backed-off
model. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
27–38.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses.
In Proceedings of the International Conference on
Language Recources and Evaluation (LREC, pages
449–454.

Luciano Del Corro and Rainer Gemulla. 2013.
Clausie: Clause-based open information extraction.
In Proceedings of the 22Nd International Confer-
ence on World Wide Web, WWW ’13, pages 355–
366.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Soci-
ety, Series B, 39(1):1–38.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011a. Identifying relations for open information
extraction. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’11, pages 1535–1545.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011b. Identifying relations for open information
extraction. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing, pages 1535–1545. Association for Computa-
tional Linguistics.

Christiane Fellbaum, editor. 1998. WordNet: an elec-
tronic lexical database. MIT Press.

Lyn Frazier. 1978. On comprehending sentences: Syn-
tactic parsing strategies. Ph.D. thesis, University of
Connecticut.

Sanda M. Harabagiu and Marius Pasca. 1999. Inte-
grating symbolic and statistical methods for prepo-
sitional phrase attachment. In Proceedings of the
Twelfth International Florida Artificial Intelligence
Research Society ConferenceFLAIRS, pages 303–
307.

Donald Hindle and Mats Rooth. 1993. Structural am-
biguity and lexical relations. Computational Lin-
guistics, 19(1):103–120.

Dirk Hovy, Ashish Vaswani, Stephen Tratz, David Chi-
ang, and Eduard Hovy. 2011. Models and training
for unsupervised preposition sense disambiguation.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume 2,
pages 323–328.

John Kimball. 1988. Seven principles of surface struc-
ture parsing in natural language. Cognition, 2:15–
47.

Karin Kipper, Anna Korhonen, Neville Ryant, and
Martha Palmer. 2008. A large-scale classification
of english verbs. Language Resources and Evalua-
tion, 42(1):21–40.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics,ACL, pages 423–430.



Ni Lao, Tom Mitchell, and William W Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 529–539. Association for Computa-
tional Linguistics.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings of
the 46th Annual Meeting of the Association for Com-
putational Linguistics, ACL, pages 236–244.

Tom M. Mitchell, William W. Cohen, Estevam R. Hr-
uschka Jr., Partha Pratim Talukdar, Justin Bet-
teridge, Andrew Carlson, Bhavana Dalvi Mishra,
Matthew Gardner, Bryan Kisiel, Jayant Krishna-
murthy, Ni Lao, Kathryn Mazaitis, Thahir Mo-
hamed, Ndapandula Nakashole, Emmanouil Anto-
nios Platanios, Alan Ritter, Mehdi Samadi, Burr Set-
tles, Richard C. Wang, Derry Tanti Wijaya, Abhi-
nav Gupta, Xinlei Chen, Abulhair Saparov, Malcolm
Greaves, and Joel Welling. 2015. Never-ending
learning. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-
30, 2015, Austin, Texas, USA., pages 2302–2310.

Ndapandula Nakashole and Tom M. Mitchell. 2014.
Language-aware truth assessment of fact candidates.
In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics, ACL
2014, June 22-27, 2014, Baltimore, MD, USA, Vol-
ume 1: Long Papers, pages 1009–1019.

Ndapandula Nakashole and Gerhard Weikum. 2012.
Real-time population of knowledge bases: opportu-
nities and challenges. In Proceedings of the Joint
Workshop on Automatic Knowledge Base Construc-
tion and Web-scale Knowledge Extraction, pages
41–45. Association for Computational Linguistics.

Ndapandula Nakashole, Martin Theobald, and Gerhard
Weikum. 2011. Scalable knowledge harvesting
with high precision and high recall. In Proceedings
of the Fourth ACM International Conference on Web
Search and Data Mining, WSDM ’11, pages 227–
236.

Ndapandula Nakashole, Tomasz Tylenda, and Gerhard
Weikum. 2013. Fine-grained semantic typing of
emerging entities. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics, ACL, pages 1488–1497.

Kamal Nigam, Andrew McCallum, Sebastian Thrun,
and Tom M. Mitchell. 2000. Text classification
from labeled and unlabeled documents using EM.
Machine Learning, 39(2/3):103–134.

Patrick Pantel and Dekang Lin. 2000. An unsuper-
vised approach to prepositional phrase attachment
using contextually similar words. In 38th Annual
Meeting of the Association for Computational Lin-
guistics, ACL.

Adwait Ratnaparkhi, Jeff Reynar, and Salim Roukos.
1994. A maximum entropy model for prepositional
phrase attachment. In Proceedings of the Workshop
on Human Language Technology, HLT ’94, pages
250–255.

Adwait Ratnaparkhi. 1998. Statistical models for
unsupervised prepositional phrase attachement. In
36th Annual Meeting of the Association for Compu-
tational Linguistics and 17th International Confer-
ence on Computational Linguistics, COLING-ACL,
pages 1079–1085.

Vivek Srikumar and Dan Roth. 2013. Modeling se-
mantic relations expressed by prepositions. TACL,
1:231–242.

Jiri Stetina and Makoto Nagao. 1997. Prepositional
phrase attachment through a backed-off model. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 66–80.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th international con-
ference on World Wide Web, pages 697–706. ACM.

Kristina Toutanova, Christopher D. Manning, and An-
drew Y. Ng. 2004. Learning random walk models
for inducing word dependency distributions. In Ma-
chine Learning, Proceedings of the Twenty-first In-
ternational Conference, ICML.

Olga van Herwijnen, Antal van den Bosch, Jacques
M. B. Terken, and Erwin Marsi. 2003. Learning PP
attachment for filtering prosodic phrasing. In 10th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics,EACL, pages
139–146.

Greg Whittemore, Kathleen Ferrara, and Hans Brun-
ner. 1990. Empirical study of predictive powers od
simple attachment schemes for post-modifier prepo-
sitional phrases. In 28th Annual Meeting of the As-
sociation for Computational Linguistics,ACL, pages
23–30.

Derry Wijaya, Ndapandula Nakashole, and Tom
Mitchell. 2014. Ctps: Contextual temporal profiles
for time scoping facts via entity state change detec-
tion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Shaojun Zhao and Dekang Lin. 2004. A nearest-
neighbor method for resolving pp-attachment ambi-
guity. In Natural Language Processing - First Inter-
national Joint Conference, IJCNLP, pages 545–554.


